Simulation of automatic actuator fault in a low-thrust rocket engine test system
-
摘要:
针对某小推力发动机试验系统中自动器故障的情况,建立了包括气动液阀、减压器、燃烧室、贮箱等组件模型,在Amesim平台上搭建试验系统仿真模型。通过仿真结果与试验数据的对比,验证了组件模型及仿真系统对试验系统实际工作情况的模拟效果,系统稳定工作阶段各主要参数的误差不超过2.8%。在系统正常工况基础上,对气动阀控制腔泄漏和减压器内漏两种故障下系统工况进行仿真计算,得到了故障工况下系统各参数的预测结果:减压器内漏故障发生30 s后,燃烧室压力可偏移正常工况14.3%,混合比偏移37.3%;气动阀泄漏面积达到24 mm2时,推进剂阀门将完全关闭。仿真结果对试验系统故障工况做出预测,并为故障分析、识别等积累了数据。
Abstract:Taking the fault conditions of automatic actuator failure in a low-thrust liquid rocket engine test system as the research object, the models of the pneumatic liquid valve, the pressure regulator, the combustion chamber and the propellant tank were conducted. And the simulation system was built on Amesim platform. Through comparison between calculated data and test data, the reliability of new models was verified respectively. Furthermore, the simulation effect on the normal working condition of the whole test system was demonstrated, showing that the steady state error of main parameters was less than 2.8%. Based on the normal working condition, the prediction results of fault conditions under failure of the pneumatic liquid valve control cavity leakage and the pressure regulator internal leakage were calculated. The results showed that the chamber pressure can deviate from the normal conditions by 14.3% and the mixing ratio by 37.3% after the failure of pressure regulator internal leakage for 30 s. And when the leakage area of the pneumatic valve reached 24 mm2, the propellant valve was completely closed. The prediction results can be accumulated for further work on fault detection, fault analysis and intelligent control of the test system.
-
表 1 正常工况仿真结果与试验数据对比
Table 1. Comparison of simulation and test results of the normal condition
参数 仿真结果 试验数据 误差/% 燃烧室压力/MPa 0.805 0.807 0.2 燃料质量流量/(g/s) 366.6 364.2 0.6 氧化剂质量流量/(g/s) 606.3 623.9 2.8 燃料贮箱压力/MPa 1.638 1.656 1.1 氧化剂贮箱压力/MPa 1.659 1.686 1.6 -
[1] 朱凤宇. 液体火箭发动机试车台健康管理关键技术研究[D]. 哈尔滨: 哈尔滨工业大学,2016. ZHU Fengyu. Research on key techniques of health management in liquid propellant rocket engine ground testing bed[D]. Harbin: Harbin Institute of Technology,2016. (in ChineseZHU Fengyu. Research on key techniques of health management in liquid propellant rocket engine ground testing bed[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese) [2] 张振臻,陈晖,高玉闪,等. 液体火箭发动机故障诊断技术综述[J]. 推进技术,2022,43(6): 20-38. ZHANG Zhenzhen,CHEN Hui,GAO Yushan,et al. Review on fault diagnosis technology of liquid rocket engine[J]. Journal of Propulsion Technology,2022,43(6): 20-38. (in Chinese doi: 10.13675/j.cnki.tjjs.210345ZHANG Zhenzhen, CHEN Hui, GAO Yushan, et al. Review on fault diagnosis technology of liquid rocket engine[J]. Journal of Propulsion Technology, 2022, 43(6): 20-38. (in Chinese) doi: 10.13675/j.cnki.tjjs.210345 [3] 胡伟,张振鹏. 全流量补燃循环发动机系统的响应特性[J]. 航空动力学报,2006,21(2): 410-416. HU Wei,ZHANG Zhenpeng. Research on response characteristics of the full-flow staged combustion cycle rocket engine[J]. Journal of Aerospace Power,2006,21(2): 410-416. (in Chinese doi: 10.3969/j.issn.1000-8055.2006.02.031HU Wei, ZHANG Zhenpeng. Research on response characteristics of the full-flow staged combustion cycle rocket engine[J]. Journal of Aerospace Power, 2006, 21(2): 410-416. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.02.031 [4] 李家文,郑安豫. 液体火箭发动机稳态特性仿真软件的改进[J]. 航空动力学报,2007,22(7): 1204-1208. LI Jiawen,ZHENG Anyu. Improvement on simulation software for static characteristics of liquid rocket engine[J]. Journal of Aerospace Power,2007,22(7): 1204-1208. (in Chinese doi: 10.3969/j.issn.1000-8055.2007.07.031LI Jiawen, ZHENG Anyu. Improvement on simulation software for static characteristics of liquid rocket engine[J]. Journal of Aerospace Power, 2007, 22(7): 1204-1208. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.07.031 [5] 白晓瑞. 液体火箭推进系统动态特性仿真研究[D]. 长沙: 国防科学技术大学,2008. BAI Xiaorui. Numerical analysis on dynamic characteristics of liquid rocket propulsion system[D]. Changsha: National University of Defense Technology,2008. (in ChineseBAI Xiaorui. Numerical analysis on dynamic characteristics of liquid rocket propulsion system[D]. Changsha: National University of Defense Technology, 2008. (in Chinese) [6] 翟一帆. 膨胀循环发动机推力调节过程动态仿真研究[D]. 北京: 中国运载火箭技术研究院,2017. ZHAI Yifan. Dynamic simulatoin study on throttling process of expander cycle rocket engine[D]. Beijing: China Academy of Launch Vehicle Technology,2017. (in ChineseZHAI Yifan. Dynamic simulatoin study on throttling process of expander cycle rocket engine[D]. Beijing: China Academy of Launch Vehicle Technology, 2017. (in Chinese) [7] 巩岩博. 低温液体火箭发动机静态特性建模与仿真研究[D]. 北京: 中国运载火箭技术研究院,2019. GONG Yanbo. Modeling and simulation of cryogenic liquid rocket engine static characteristics[D]. Beijing: China Academy of Launch Vehicle Technology,2019. (in ChineseGONG Yanbo. Modeling and simulation of cryogenic liquid rocket engine static characteristics[D]. Beijing: China Academy of Launch Vehicle Technology, 2019. (in Chinese) [8] 陈宏玉. 液体火箭发动机系统瞬态特性仿真技术研究进展[R]. 昆明: 中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议,2019. [9] 郑大勇,王弘亚,胡骏. 大推力氢氧发动机瞬态特性研究[J]. 推进技术,2021,42(8): 1761-1769. ZHENG Dayong,WANG Hongya,HU Jun. Transient characteristics of high-thrust oxygen/hydrogen rocket engine[J]. Journal of Propulsion Technology,2021,42(8): 1761-1769. (in ChineseZHENG Dayong, WANG Hongya, HU Jun. Transient characteristics of high-thrust oxygen/hydrogen rocket engine[J]. Journal of Propulsion Technology, 2021, 42(8): 1761-1769. (in Chinese) [10] 杨明磊,张黎辉. 液氧/煤油补燃循环发动机起动过程研究[J]. 火箭推进,2009,35(1): 21-26. YANG Minglei,ZHANG Lihui. Study on start-up of the staged combustion LOX/kerosene rocket engine[J]. Journal of Rocket Pro-pulsion,2009,35(1): 21-26. (in Chinese doi: 10.3969/j.issn.1672-9374.2009.01.004YANG Minglei, ZHANG Lihui. Study on start-up of the staged combustion LOX/kerosene rocket engine[J]. Journal of Rocket Pro-pulsion, 2009, 35(1): 21-26. (in Chinese) doi: 10.3969/j.issn.1672-9374.2009.01.004 [11] HOLT K,MAJUMDAR A,STEADMAN T,et al. Numerical modeling and test data comparison of propulsion test article helium pressurization system[R]. AIAA 2000-3719,2000. [12] 张青松,张振鹏,杨雪,等. 液体火箭发动机试验台气液管路系统故障仿真及分析[J]. 航空动力学报,2006,21(2): 403-409. ZHANG Qingsong,ZHANG Zhenpeng,YANG Xue,et al. Fault simulation and analysis for the fluid systems of LPRE test-bed[J]. Journal of Aerospace Power,2006,21(2): 403-409. (in Chinese doi: 10.3969/j.issn.1000-8055.2006.02.030ZHANG Qingsong, ZHANG Zhenpeng, YANG Xue, et al. Fault simulation and analysis for the fluid systems of LPRE test-bed[J]. Journal of Aerospace Power, 2006, 21(2): 403-409. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.02.030 [13] 陈阳,高芳,张振鹏,等. 液体火箭发动机试验台贮箱增压系统模块化仿真[J]. 航空动力学报,2005,20(2): 339-344. CHEN Yang,GAO Fang,ZHANG Zhenpeng,et al. Modular simulation for tank pressurization system of LRE test-bed[J]. Journal of Aerospace Power,2005,20(2): 339-344. (in Chinese doi: 10.3969/j.issn.1000-8055.2005.02.033CHEN Yang, GAO Fang, ZHANG Zhenpeng, et al. Modular simulation for tank pressurization system of LRE test-bed[J]. Journal of Aerospace Power, 2005, 20(2): 339-344. (in Chinese) doi: 10.3969/j.issn.1000-8055.2005.02.033 [14] 陈阳,高芳,张振鹏,等. 低温推进剂贮箱增压系统分布参数数值仿真(Ⅰ)贮箱的有限体积模型[J]. 航空动力学报,2008,23(2): 323-328. CHEN Yang,GAO Fang,ZHANG Zhenpeng,et al. Distributed parameter numerical simulation for the transients of cryogenic propellant tank pressurization system (Ⅰ) finite volume model of tank[J]. Journal of Aerospace Power,2008,23(2): 323-328. (in Chinese doi: 10.13224/j.cnki.jasp.2008.02.028CHEN Yang, GAO Fang, ZHANG Zhenpeng, et al. Distributed parameter numerical simulation for the transients of cryogenic propellant tank pressurization system (Ⅰ) finite volume model of tank[J]. Journal of Aerospace Power, 2008, 23(2): 323-328. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.02.028 [15] 陈阳,张振鹏,杨思锋,等. 低温推进剂贮箱增压系统分布参数数值仿真(Ⅱ)增压系统数值模型与仿真结果[J]. 航空动力学报,2008,23(2): 329-335. CHEN Yang,ZHANG Zhenpeng,YANG Sifeng,et al. Distributed parameter numerical simulation for the transients of cryogenic propellant tank pressurization system (Ⅱ) numerical model and simulation results of pressurization system[J]. Journal of Aerospace Power,2008,23(2): 329-335. (in Chinese doi: 10.13224/j.cnki.jasp.2008.02.029CHEN Yang, ZHANG Zhenpeng, YANG Sifeng, et al. Distributed parameter numerical simulation for the transients of cryogenic propellant tank pressurization system (Ⅱ) numerical model and simulation results of pressurization system[J]. Journal of Aerospace Power, 2008, 23(2): 329-335. (in Chinese) doi: 10.13224/j.cnki.jasp.2008.02.029 [16] 王珉,胡茑庆,秦国军. LRE试验台加注系统故障建模与仿真分析[J]. 系统仿真学报,2010,22(11): 2672-2675. WANG Min,HU Niaoqing,QIN Guojun. Fault modeling and simulation analysis for LRE test-bed filling system[J]. Journal of System Simulation,2010,22(11): 2672-2675. (in Chinese doi: 10.16182/j.cnki.joss.2010.11.010WANG Min, HU Niaoqing, QIN Guojun. Fault modeling and simulation analysis for LRE test-bed filling system[J]. Journal of System Simulation, 2010, 22(11): 2672-2675. (in Chinese) doi: 10.16182/j.cnki.joss.2010.11.010 [17] 陶玉静,谭建国,田章福,等. 三组元发动机试验系统动态过程仿真[J]. 推进技术,2004,25(5): 388-391. TAO Yujing,TAN Jianguo,TIAN Zhangfu,et al. Dynamic process simulation for experimental system of tripropellant engine[J]. Journal of Propulsion Technology,2004,25(5): 388-391. (in Chinese doi: 10.3321/j.issn:1001-4055.2004.05.002TAO Yujing, TAN Jianguo, TIAN Zhangfu, et al. Dynamic process simulation for experimental system of tripropellant engine[J]. Journal of Propulsion Technology, 2004, 25(5): 388-391. (in Chinese) doi: 10.3321/j.issn:1001-4055.2004.05.002 [18] 周晨初. 液体火箭发动机试验台气路系统数值仿真与应用研究[D]. 北京: 北京航空航天大学,2014. ZHOU Chenchu. Simulation for gas system of liquid rocket engine test bench and its application on engineering[D]. Beijing: Beihang University,2014. (in ChineseZHOU Chenchu. Simulation for gas system of liquid rocket engine test bench and its application on engineering[D]. Beijing: Beihang University, 2014. (in Chinese) [19] 沈赤兵,陈启智. 用非线性模型分析气动液阀的启动特性[J]. 推进技术,1997,18(3): 73-78. SHEN Chibing,CHEN Qizhi. An analysis on start characteristics of pneumatic hydraulic valve using nonlinear model[J]. Journal of Propulsion Technology,1997,18(3): 73-78. (in Chinese doi: 10.3321/j.issn:1001-4055.1997.03.018SHEN Chibing, CHEN Qizhi. An analysis on start characteristics of pneumatic hydraulic valve using nonlinear model[J]. Journal of Propulsion Technology, 1997, 18(3): 73-78. (in Chinese) doi: 10.3321/j.issn:1001-4055.1997.03.018 [20] 尤裕荣,曾维亮. 逆向卸荷式气体减压阀的动态特性仿真[J]. 火箭推进,2006,32(3): 24-30. YOU Yurong,ZENG Weiliang. Simulation on reverse balanced pneumatic pressure reducing valve dynamic characteristic[J]. Journal of Rocket Propulsion,2006,32(3): 24-30. (in Chinese doi: 10.3969/j.issn.1672-9374.2006.03.005YOU Yurong, ZENG Weiliang. Simulation on reverse balanced pneumatic pressure reducing valve dynamic characteristic[J]. Journal of Rocket Propulsion, 2006, 32(3): 24-30. (in Chinese) doi: 10.3969/j.issn.1672-9374.2006.03.005 [21] GAD O. Comprehensive nonlinear modeling of a pilot operated relief valve[J]. Journal of Dynamic Systems,Measurement,and Control,2013,135(1): 011011. [22] 滕浩,石玉鹏,张亮,等. 基于AMESim减压阀动态特性仿真与试验研究[J]. 上海航天,2015,32(1): 48-53,67. TENG Hao,SHI Yupeng,ZHANG Liang,et al. Simulative and experimental study of dynamic characteristics of pressure relief valve based on AMESim[J]. Aerospace Shanghai,2015,32(1): 48-53,67. (in Chinese doi: 10.19328/j.cnki.1006-1630.2015.01.011TENG Hao, SHI Yupeng, ZHANG Liang, et al. Simulative and experimental study of dynamic characteristics of pressure relief valve based on AMESim[J]. Aerospace Shanghai, 2015, 32(1): 48-53, 67. (in Chinese) doi: 10.19328/j.cnki.1006-1630.2015.01.011 [23] 张雪梅,张黎辉,金广明,等. 减压器动态过程的数值仿真[J]. 航空动力学报,2004,19(4): 541-545. ZHANG Xuemei,ZHANG Lihui,JIN Guangming,et al. Numerical simulation of the dynamic process for pressure regulator[J]. Journal of Aerospace Power,2004,19(4): 541-545. (in Chinese doi: 10.3969/j.issn.1000-8055.2004.04.020ZHANG Xuemei, ZHANG Lihui, JIN Guangming, et al. Numerical simulation of the dynamic process for pressure regulator[J]. Journal of Aerospace Power, 2004, 19(4): 541-545. (in Chinese) doi: 10.3969/j.issn.1000-8055.2004.04.020 [24] 李伟堃. 液体火箭发动机充填过程的模块化建模与仿真研究[D]. 北京: 北京航空航天大学,2019. LI Weikun. Modular modeling and simulation for priming process of liquid rocket engine[D]. Beijing: Beihang University,2019. (in ChineseLI Weikun. Modular modeling and simulation for priming process of liquid rocket engine[D]. Beijing: Beihang University, 2019. (in Chinese) -