留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波箔型动压气体轴承间隙非一致滑移流场

张镜洋 孙义建 吕元伟 张靖周 陈卫东 刘晨晨

张镜洋, 孙义建, 吕元伟, 等. 波箔型动压气体轴承间隙非一致滑移流场[J]. 航空动力学报, 2024, 39(8):20220568 doi: 10.13224/j.cnki.jasp.20220568
引用本文: 张镜洋, 孙义建, 吕元伟, 等. 波箔型动压气体轴承间隙非一致滑移流场[J]. 航空动力学报, 2024, 39(8):20220568 doi: 10.13224/j.cnki.jasp.20220568
ZHANG Jingyang, SUN Yijian, LYU Yuanwei, et al. Flow field in clearance of dynamic pressure gas foil bearing withpartical slip[J]. Journal of Aerospace Power, 2024, 39(8):20220568 doi: 10.13224/j.cnki.jasp.20220568
Citation: ZHANG Jingyang, SUN Yijian, LYU Yuanwei, et al. Flow field in clearance of dynamic pressure gas foil bearing withpartical slip[J]. Journal of Aerospace Power, 2024, 39(8):20220568 doi: 10.13224/j.cnki.jasp.20220568

波箔型动压气体轴承间隙非一致滑移流场

doi: 10.13224/j.cnki.jasp.20220568
基金项目: 航空基金(201928052008); 江苏省自然科学基金(BK20210303)
详细信息
    作者简介:

    张镜洋(1981-),男,教授、硕士生导师,博士,主要从事微流动与传热技术方面的研究

  • 中图分类号: V232;TH123

Flow field in clearance of dynamic pressure gas foil bearing withpartical slip

  • 摘要:

    为揭示界面滑移对动压气体轴承间隙流场的影响机理,以波箔型动压气体径向轴承为研究对象,建立周向非一致滑移修正雷诺方程并采用超松弛迭代法进行求解,分析了转速、偏心率、间隙高度和箔片变形等因素变化下滑移对轴承间隙内流场的影响。结果表明:随着转速的增大或间隙高度的减小,流固界面由无滑移状态转变为静子侧滑移状态,并最终达到两侧均滑移状态,转子侧从压力上升区、静子侧从压力下降区向两侧滑移区域面积和速度逐渐增大;而偏心率的增大仅会导致滑移速度增大,而滑移区域面积几乎不变;箔片变形使滑移速度场呈现阶梯状分布。非一致滑移对最高气膜压力最大影响可达17%。速度梯度和压力场显著变化诱导界面剪应力和极限剪应力复杂演化而产生上述规律。

     

  • 图 1  计算模型

    Figure 1.  Calculation model

    图 2  周向非一致界面滑移示意图

    Figure 2.  Diagram of circumferential partial slip

    图 3  等效弯曲梁结构模型

    Figure 3.  Structural model of equivalent curved beam

    图 4  计算网格划分

    Figure 4.  Computational meshing

    图 5  计算流程图

    Figure 5.  Calculation flowchart

    图 6  与文献结果验证

    Figure 6.  Validation with literature results

    图 7  高转速动压气体轴承试验系统

    Figure 7.  Experimental system of high speed dynamic gas bearing

    图 8  与试验结果验证

    Figure 8.  Verification with experimental results

    图 9  无量纲滑移速度随转速变化云图

    Figure 9.  Diagram of dimensionless slip velocity at different rotating speeds

    图 10  不同转速下剪应力变化图

    Figure 10.  Variation diagram of shear stress at different rotating speeds

    图 11  不同转速下无量纲滑移速度和压力图

    Figure 11.  Dimensionless slip velocity and pressure diagram at different rotating speeds

    图 12  无量纲滑移速度随偏心率变化云图

    Figure 12.  Diagram of dimensionless slip velocity at different eccentricities

    图 13  不同偏心率下剪应力变化图

    Figure 13.  Variation diagram of shear stress at different eccentricities

    图 14  不同偏心率下无量纲滑移速度和压力图

    Figure 14.  Dimensionless slip velocity and pressure diagram at different eccentricities

    图 15  无量纲滑移速度随间隙高度变化云图

    Figure 15.  Diagram of dimensionless slip velocity at different gap heights

    图 16  不同间隙高度下剪应力变化图

    Figure 16.  Variation diagram of shear stress at different gap heights

    图 17  不同间隙高度下无量纲滑移速度和压力图

    Figure 17.  Dimensionless slip velocity and pressure diagram at different gap heights

    图 18  有箔片时轴承无量纲滑移速度图

    Figure 18.  Dimensionless slip velocity diagram of bearing with foil

    图 19  z=L/2截面处无量纲滑移速度和压力图

    Figure 19.  Dimensionless slip velocity and pressure diagram on z=L/2 section

    表  1  计算工况

    Table  1.   Calculation conditions

    参数 数值
    间隙高度c/µm 40~160
    转速N/104 (r/min) 4~13
    偏心率ε 0.2~0.8
    箔片数量M 8
    长径比L/d 0.8
    转子半径R/mm 30
    平箔厚度tp/µm 76.2
    波箔厚度tb/µm 76.2
    单位波箔长度S/mm 4.064
    单位波长跨度2l/mm 3.434
    弹性模量Et/GPa 207
    下载: 导出CSV
  • [1] ZHANG Chuanbing,AO Hongrui,JIANG Hongyuan. Static and dynamic bearing performances of hybrid gas dynamic bearings[J]. Tribology International,2021,160: 107036. doi: 10.1016/j.triboint.2021.107036
    [2] 冯凯,张俊,王法义. 径向间隙及加工工艺对气体箔片轴承性能的影响[J]. 航空动力学报,2016,31(11): 2773-2780. FENG Kai,ZHANG Jun,WANG Fayi. Influence of radial clearance and processing technology on structural properties of gas foil bearing[J]. Journal of Aerospace Power,2016,31(11): 2773-2780. (in Chinese doi: 10.13224/j.cnki.jasp.2016.11.028

    FENG Kai, ZHANG Jun, WANG Fayi. Influence of radial clearance and processing technology on structural properties of gas foil bearing[J]. Journal of Aerospace Power, 2016, 31(11): 2773-2780. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.11.028
    [3] 康伟,张家忠,刘雁,等. 气体动压轴承-转子动力系统稳定性及分岔[J]. 航空动力学报,2007,22(9): 1537-1543. KANG Wei,ZHANG Jiazhong,LIU Yan,et al. Stability and bifurcation of symmetrical rotor in self-acting gas journal bearings[J]. Journal of Aerospace Power,2007,22(9): 1537-1543. (in Chinese doi: 10.3969/j.issn.1000-8055.2007.09.023

    KANG Wei, ZHANG Jiazhong, LIU Yan, et al. Stability and bifurcation of symmetrical rotor in self-acting gas journal bearings[J]. Journal of Aerospace Power, 2007, 22(9): 1537-1543. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.09.023
    [4] BAIR S,WINER W O. Shear strength measurements of lubricants at high pressure[J]. Journal of Lubrication Technology,1979,101(3): 251-257. doi: 10.1115/1.3453339
    [5] NDIAYE S N,MARTINIE L,PHILIPPON D,et al. A quantitative friction-based approach of the limiting shear stress pressure and temperature dependence[J]. Tribology Letters,2017,65(4): 1-14.
    [6] WU Lin. A slip model for rarefied gas flows at arbitrary Knudsen number[J]. Applied Physics Letters,2008,93(25): 1-4.
    [7] 燕震雷,伍林. 稀薄效应对可倾瓦动压气体轴承性能的影响[J]. 航空动力学报,2020,35(7): 1496-1505. YAN Zhenlei,WU Lin. Effect of rarefied effect on the performance of tilting pad dynamic pressure gas bearings[J]. Journal of Aerospace Power,2020,35(7): 1496-1505. (in Chinese doi: 10.13224/j.cnki.jasp.2020.07.018

    YAN Zhenlei, WU Lin. Effect of rarefied effect on the performance of tilting pad dynamic pressure gas bearings[J]. Journal of Aerospace Power, 2020, 35(7): 1496-1505. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.07.018
    [8] ZHANG Yongbin,WEN Shizhu. An analysis of elastohydrodynamic lubrication with limiting shear stress: Part Ⅰ theory and solutions[J]. Tribology Transactions,2002,45(2): 135-144. doi: 10.1080/10402000208982532
    [9] 王丽丽. 高速滑动轴承的界面滑移及空穴机理研究[D]. 济南: 山东大学,2012. WANG Lili. Study on wall slip and cavitation mechanism of a high speed journal bearing[D]. Jinan: Shandong University,2012. (in Chinese

    WANG Lili. Study on wall slip and cavitation mechanism of a high speed journal bearing[D]. Jinan: Shandong University, 2012. (in Chinese)
    [10] 胡嘉麟,高金海,黄恩亮,等. 滑移边界对空气轴承性能的影响研究[J]. 推进技术,2017,38(6): 1359-1369. HU Jialin,GAO Jinhai,HUANG Enliang,et al. Effects of slip boundary on air bearing performance[J]. Journal of Propulsion Technology,2017,38(6): 1359-1369. (in Chinese doi: 10.13675/j.cnki.tjjs.2017.06.020

    HU Jialin, GAO Jinhai, HUANG Enliang, et al. Effects of slip boundary on air bearing performance[J]. Journal of Propulsion Technology, 2017, 38(6): 1359-1369. (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.06.020
    [11] AKBARI M,GHASEMI M. A novel kinetic-based slip velocity boundary condition suitable for compressible gas flows in micro-/ nanochannels[J]. Acta Mechanica,2018,229(11): 4471-4484. doi: 10.1007/s00707-018-2236-x
    [12] ZHANG Yaoguang,WANG Wenzhong,LIANG He,et al. Layered oil slip model for investigation of film thickness behaviours at high speed conditions[J]. Tribology International,2019,131: 137-147. doi: 10.1016/j.triboint.2018.10.035
    [13] PORRAS-VAZQUEZ A,MARTINIE L,VERGNE P,et al. Independence between friction and velocity distribution in fluids subjected to severe shearing and confinement[J]. Physical Chemistry Chemical Physics,2018,20(43): 27280-27293. doi: 10.1039/C8CP04620D
    [14] 张镜洋,赵晓荣,常海萍,等. 边界滑移对波箔型动压气体轴承静特性的影响[J]. 推进技术,2018,39(2): 388-395. ZHANG Jingyang,ZHAO Xiaorong,CHANG Haiping,et al. Effects of sliding boundary on static characteristics of aerodynamic compliant foil bearing[J]. Journal of Propulsion Technology,2018,39(2): 388-395. (in Chinese doi: 10.13675/j.cnki.tjjs.2018.02.018

    ZHANG Jingyang, ZHAO Xiaorong, CHANG Haiping, et al. Effects of sliding boundary on static characteristics of aerodynamic compliant foil bearing[J]. Journal of Propulsion Technology, 2018, 39(2): 388-395. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.02.018
    [15] 李旺. 动压气体轴承周向变截面间隙内流动特性研究[D]. 南京: 南京航空航天大学,2019. LI Wang. Research on flow characteristics of aerodynamic bearings with variable cross sectional clearance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2019. (in Chinese

    LI Wang. Research on flow characteristics of aerodynamic bearings with variable cross sectional clearance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [16] 石卓奇. 波箔动压气体轴承承载特性的理论与实验研究[D]. 哈尔滨: 哈尔滨工业大学,2016. SHI Zhuoqi. Theoretical and experimental research on bearing performance of bump foil gas bearings[D]. Harbin: Harbin Institute of Technology,2016. (in Chinese

    SHI Zhuoqi. Theoretical and experimental research on bearing performance of bump foil gas bearings[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [17] GRANICK S,ZHU Yingxi,LEE H. Slippery questions about complex fluids flowing past solids[J]. Nature Materials,2003,2(4): 221-227. doi: 10.1038/nmat854
    [18] ZHU B,LI Y P,WANG W G,et al. Boundary slippage modeling and optimization of hydrophobic tilting pad thrust bearing with elastic deformation[J]. Tribology International,2019,136: 299-316. doi: 10.1016/j.triboint.2019.03.060
    [19] ZHANG Haijun,ZHU Changsheng,YANG Qin. Characteristics of micro gas journal bearings based on effective viscosity[J]. Journal of Tribology,2009,131(4): 1-5.
    [20] 马国军. 微纳米间隙流动的边界滑移及其流体动力学研究[D]. 大连: 大连理工大学,2007. MA Guojun. Boundary slip and hydrodynamics of fluid flow in a micro/nano-gap[D]. Dalian: Dalian University of Technology,2007. (in Chinese

    MA Guojun. Boundary slip and hydrodynamics of fluid flow in a micro/nano-gap[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
    [21] WU Yao,YANG Lihua,XU Tengfei,et al. Combined effect of rarefaction and effective viscosity on micro-elasto-aerodynamic lubrication performance of gas microbearings[J]. Micromachines,2019,10(10): 657-676. doi: 10.3390/mi10100657
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  54
  • HTML浏览量:  27
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-20
  • 网络出版日期:  2023-11-13

目录

    /

    返回文章
    返回