留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

编码器安装误差抑制的轴承外圈故障特征提取

徐万通 郭瑜 陈鑫

徐万通, 郭瑜, 陈鑫. 编码器安装误差抑制的轴承外圈故障特征提取[J]. 航空动力学报, 2024, 39(8):20220584 doi: 10.13224/j.cnki.jasp.20220584
引用本文: 徐万通, 郭瑜, 陈鑫. 编码器安装误差抑制的轴承外圈故障特征提取[J]. 航空动力学报, 2024, 39(8):20220584 doi: 10.13224/j.cnki.jasp.20220584
XU Wantong, GUO Yu, CHEN Xin. Feature extraction of bearing outer ring fault for encoder installation error suppression[J]. Journal of Aerospace Power, 2024, 39(8):20220584 doi: 10.13224/j.cnki.jasp.20220584
Citation: XU Wantong, GUO Yu, CHEN Xin. Feature extraction of bearing outer ring fault for encoder installation error suppression[J]. Journal of Aerospace Power, 2024, 39(8):20220584 doi: 10.13224/j.cnki.jasp.20220584

编码器安装误差抑制的轴承外圈故障特征提取

doi: 10.13224/j.cnki.jasp.20220584
基金项目: 国家自然科学基金(52165067); 云南省科技计划重大专项项目(202002AC080001)
详细信息
    作者简介:

    徐万通(1995-),男,硕士生,主要研究方向为齿轮箱故障特征提取。E-mail:xwt_kust@163.com

    通讯作者:

    郭瑜(1971-),男,教授、博士生导师,博士,主要研究方向为机械动态测试技术。E-mail:kmgary@163.com

  • 中图分类号: V263.6;TH133.33

Feature extraction of bearing outer ring fault for encoder installation error suppression

  • 摘要:

    针对编码器信号中安装误差导致轴承外圈故障特征提取困难的难题,提出一种编码器安装误差抑制方法。该方法依据编码器安装误差特性,结合方均根包络技术,获得原始瞬时角速度信号上包络线。基于分段逐步逼近技术和绝对平均差指标,结合反斜率修正方法,进一步拟合编码器安装误差分量。采用改进能量比指标自适应确定优化包络线窗长,并获得对应的剩余信号。通过剩余信号的包络谱,获取轴承外圈故障特征频率,揭示故障特征。与传统抑制周期性分量的倒谱预白化方法相对比,该方法清晰地提取出滚动轴承外圈的前3阶故障特征阶次,证明了该方法对编码器误差有较好的抑制效果,仿真和实验验证了所提方法的有效性。

     

  • 图 1  编码器信号采集原理

    Figure 1.  Encoder signal acquisition principle

    图 2  编码器安装误差示意图

    Figure 2.  Schematic diagram of encoder installation error

    图 3  不同偏心率ρRe的变化趋势

    Figure 3.  Variation trend of Re under different ρ conditions

    图 4  不同倾斜角αRs的变化趋势

    Figure 4.  Variation trend of Rs under different α conditions

    图 5  安装误差的相位对极值的影响

    Figure 5.  Effect of installation error phase on extremum

    图 6  不同ωt)对IAS信号的影响

    Figure 6.  Effect of different ωt) on IAS signal

    图 7  不同包络线拟合结果

    Figure 7.  Fitted results by different envelopes

    图 8  所提方法技术路线

    Figure 8.  Flow chart of proposed scheme

    图 9  反斜率法修正前的包络线

    Figure 9.  Envelope before adjusted by inverse slope method

    图 10  反斜率法修正后的包络线

    Figure 10.  Envelope adjusted by inverse slope scheme

    图 11  分段平移调整后的包络线

    Figure 11.  Segmented translation adjusted envelope

    图 12  仿真波形及包络谱图

    Figure 12.  Simulation waveform and envelope order spectrum

    图 13  不同方法处理结果对比

    Figure 13.  Results obtained by different schemes

    图 14  实验台

    Figure 14.  Test rig

    图 15  滚动轴承外圈故障示意图

    Figure 15.  Schematic diagram of rolling element bearing outer race fault

    图 16  不同方法处理结果

    Figure 16.  Results obtained by different schemes

  • [1] 梅宏斌. 滚动轴承振动监测与诊断: 理论·方法·系统[M]. 北京: 机械工业出版社,1995.
    [2] 郭瑜,郑华文,高艳,等. 基于谱峭度的滚动轴承包络分析[J]. 振动 测试与诊断,2011,31(4): 517-521,539. GUO Yu,ZHENG Huawen,GAO Yan,et al. Envelope analysis of rolling bearings based on spectral kurtosis[J]. Journal of Vibration,Measurement & Diagnosis,2011,31(4): 517-521,539. (in Chinese

    GUO Yu, ZHENG Huawen, GAO Yan, et al. Envelope analysis of rolling bearings based on spectral kurtosis[J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(4): 517-521, 539. (in Chinese)
    [3] 向丹,岑健. 基于EMD熵特征融合的滚动轴承故障诊断方法[J]. 航空动力学报,2015,30(5): 1149-1155. XIANG Dan,CEN Jian. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J]. Journal of Aerospace Power,2015,30(5): 1149-1155. (in Chinese doi: 10.13224/j.cnki.jasp.2015.05.016

    XIANG Dan, CEN Jian. Method of roller bearing fault diagnosis based on feature fusion of EMD entropy[J]. Journal of Aerospace Power, 2015, 30(5): 1149-1155. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.05.016
    [4] ZHENG Kai,LI Tianliang,SU Zuqiang,et al. Sparse elitist group lasso denoising in frequency domain for bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics,2021,17(7): 4681-4691. doi: 10.1109/TII.2020.3011065
    [5] RENAUDIN L,BONNARDOT F,MUSY O,et al. Natural roller bearing fault detection by angular measurement of true instantaneous angular speed[J]. Mechanical Systems and Signal Processing,2010,24(7): 1998-2011. doi: 10.1016/j.ymssp.2010.05.005
    [6] MOUSTAFA W,COUSINARD O,BOLAERS F,et al. Low speed bearings fault detection and size estimation using instantaneous angular speed[J]. Journal of Vibration and Control,2016,22(15): 3413-3425. doi: 10.1177/1077546314560600
    [7] COATS M D,RANDALL R B. Single and multi-stage phase demodulation based order-tracking[J]. Mechanical Systems and Signal Processing,2014,44(1/2): 86-117.
    [8] ZENG Qiang,FENG Guojin,SHAO Yimin,et al. An accurate instantaneous angular speed estimation method based on a dual detector setup[J]. Mechanical Systems and Signal Processing,2020,140: 106674. doi: 10.1016/j.ymssp.2020.106674
    [9] DENG Fang,CHEN Jie,WANG Yanyong,et al. Measurement and calibration method for an optical encoder based on adaptive differential evolution-Fourier neural networks[J]. Measurement Science and Technology,2013,24(5): 055007. doi: 10.1088/0957-0233/24/5/055007
    [10] JIAO Yang,DING Ye,DONG Zeguang,et al. Optimal-arrangement-based four-scanning-heads error separation technique for self-calibration of angle encoders[J]. Measurement Science and Technology,2018,29(8): 085005. doi: 10.1088/1361-6501/aacc8a
    [11] BORGHESANI P,PENNACCHI P,RANDALL R B,et al. Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions[J]. Mechanical Systems and Signal Processing,2013,36(2): 370-384. doi: 10.1016/j.ymssp.2012.11.001
    [12] QIN Shiqiao,HUANG Zongsheng,WANG Xingshu. Optical angular encoder installation error measurement and calibration by ring laser gyroscope[J]. IEEE Transactions on Instrumentation and Measurement,2010,59(3): 506-511. doi: 10.1109/TIM.2009.2022104
    [13] GECKELER R D,FRICKE A,ELSTER C. Calibration of angle encoders using transfer functions[J]. Measurement Science and Technology,2006,17(10): 2811-2818. doi: 10.1088/0957-0233/17/10/036
    [14] 陈鑫,郭瑜,伍星,等. 改进IESFOgram的滚动轴承故障特征提取[J]. 振动工程学报,2021,34(4): 861-868. CHEN Xin,GUO Yu,WU Xing,et al. Feature extraction of faulty rolling element bearing based on improved IESFOgram[J]. Journal of Vibration Engineering,2021,34(4): 861-868. (in Chinese doi: 10.16385/j.cnki.issn.1004-4523.2021.04.023

    CHEN Xin, GUO Yu, WU Xing, et al. Feature extraction of faulty rolling element bearing based on improved IESFOgram[J]. Journal of Vibration Engineering, 2021, 34(4): 861-868. (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2021.04.023
    [15] 曾强. 相位差分编码器原理及其行星轮系故障诊断应用研究[D]. 重庆: 重庆大学,2020. ZENG Qiang. Phase differential encoder theory and its application on planetary gear set fault diagnosis[D]. Chongqing: Chongqing University,2020. (in Chinese

    ZENG Qiang. Phase differential encoder theory and its application on planetary gear set fault diagnosis[D]. Chongqing: Chongqing University, 2020. (in Chinese)
    [16] 尹学慧. 基于Envelope包络与阶次分析的滚动轴承故障诊断[D]. 太原: 中北大学,2019. YIN Xuehui. Based on the envelope and order analysis of the rolling bearing fault diagnosis[D]. Taiyuan: North University of China,2019. (in Chinese

    YIN Xuehui. Based on the envelope and order analysis of the rolling bearing fault diagnosis[D]. Taiyuan: North University of China, 2019. (in Chinese)
    [17] GOMEZ J L,KHELF I,BOURDON A,et al. Angular modeling of a rotating machine in non-stationary conditions: application to monitoring bearing defects of wind turbines with instantaneous angular speed[J]. Mechanism and Machine Theory,2019,136: 27-51. doi: 10.1016/j.mechmachtheory.2019.01.028
    [18] 王平,廖明夫. 滚动轴承故障诊断的自适应共振解调技术[J]. 航空动力学报,2005,20(4): 606-612. WANG Ping,LIAO Mingfu. Adaptive demodulated resonance technique for the rolling bearing fault diagnosis[J]. Journal of Aerospace Power,2005,20(4): 606-612. (in Chinese doi: 10.3969/j.issn.1000-8055.2005.04.015

    WANG Ping, LIAO Mingfu. Adaptive demodulated resonance technique for the rolling bearing fault diagnosis[J]. Journal of Aerospace Power, 2005, 20(4): 606-612. (in Chinese) doi: 10.3969/j.issn.1000-8055.2005.04.015
  • 加载中
图(16)
计量
  • 文章访问数:  18
  • HTML浏览量:  13
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 网络出版日期:  2023-11-20

目录

    /

    返回文章
    返回