留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共轴刚性旋翼悬停状态气动干扰对噪声特性影响分析

江露生 李尚斌 邱逢昌 樊枫 黄水林

江露生, 李尚斌, 邱逢昌, 等. 共轴刚性旋翼悬停状态气动干扰对噪声特性影响分析[J]. 航空动力学报, 2024, 39(8):20220591 doi: 10.13224/j.cnki.jasp.20220591
引用本文: 江露生, 李尚斌, 邱逢昌, 等. 共轴刚性旋翼悬停状态气动干扰对噪声特性影响分析[J]. 航空动力学报, 2024, 39(8):20220591 doi: 10.13224/j.cnki.jasp.20220591
JIANG Lusheng, LI Shangbin, QIU Fengchang, et al. Analysis on influence of aerodynamic interference on noise characteristics of coaxial rigid rotor in hover[J]. Journal of Aerospace Power, 2024, 39(8):20220591 doi: 10.13224/j.cnki.jasp.20220591
Citation: JIANG Lusheng, LI Shangbin, QIU Fengchang, et al. Analysis on influence of aerodynamic interference on noise characteristics of coaxial rigid rotor in hover[J]. Journal of Aerospace Power, 2024, 39(8):20220591 doi: 10.13224/j.cnki.jasp.20220591

共轴刚性旋翼悬停状态气动干扰对噪声特性影响分析

doi: 10.13224/j.cnki.jasp.20220591
基金项目: 航空基金(201957002004)
详细信息
    作者简介:

    江露生(1992-),男,工程师,硕士生,主要从事直升机旋翼空气动力学研究。E-mail:jiangls@avic.com

  • 中图分类号: V211.52

Analysis on influence of aerodynamic interference on noise characteristics of coaxial rigid rotor in hover

  • 摘要:

    基于计算流体动力学(CFD)方法和噪声求解的FW-H(Ffowcs Williams-Hawkings)方程计算分析了共轴刚性旋翼在悬停状态下的气动噪声,并开展了气动干扰对噪声特性影响分析。结果表明:在悬停状态下,对于上下各四片桨叶的共轴刚性旋翼,桨叶表面压力随着桨叶旋转呈周期性变化,旋转一周出现8个小周期;声源的周期性变化导致在旋翼桨盘平面内,不同方向上的观测点的声压产生的“叠加效应”不一致,上、下旋翼桨叶交汇处的噪声水平要高于其他方位角;由于载荷的时变性导致在旋转轴方向上仍有明显的辐射噪声,在该方向上的噪声声压级明显要比单旋翼大得多。随着旋翼间距增大,双旋翼之间的干扰减小,桨叶表面的法向力波动减小,声辐射球上最大噪声声压级也明显减小。

     

  • 图 1  共轴双旋翼嵌套网格示意图

    Figure 1.  Coaxial dual-rotor overset grids

    图 2  桨叶表面压力计算与试验对比曲线(Ct,co=0.0163)

    Figure 2.  Comparison curve between calculation and test of blade surface pressure (Ct,co=0.0163)

    图 3  声压时间历程计算与试验对比

    Figure 3.  Comparison of sound pressure time history calculation and test

    图 4  悬停噪声状态观测点位置

    Figure 4.  Location of observation point

    图 5  双旋翼噪声声压时间历程(Ct,co=0.01741)

    Figure 5.  Coaxial dual-rotor’s sound pressure time history (Ct,co=0.01741)

    图 6  不同观测点声压级频谱(Ct,co=0.01741)

    Figure 6.  Sound pressure level spectrum (Ct,co=0.01741)

    图 7  单、双旋翼声压级随方位角变化曲线

    Figure 7.  Single-coaxial rotor sound pressure level variation curve with azimuth

    图 8  双旋翼声压级随方位角变化曲线

    Figure 8.  Coaxial rotor sound level variation curve with azimuth

    图 9  双旋翼噪声声压级云图

    Figure 9.  Cloud chart of sound pressure level of coaxial rotor

    图 10  单旋翼噪声声压级云图(Ct,sin=0.01182)

    Figure 10.  Cloud chart of sound pressure level of single rotor (Ct,sin=0.01182)

    图 11  共轴悬停状态旋翼桨盘载荷(Ct,co=0.01741)

    Figure 11.  Rotor disc load of coaxial rotor in hover (Ct,co=0.01741)

    图 12  单旋翼悬停状态旋翼桨盘载荷(Ct,sin=0.01182)

    Figure 12.  Rotor disc load of single rotor in hover (Ct,sin=0.01182)

    图 13  法向力系数对比曲线

    Figure 13.  Comparison curve of normal force coefficient

    图 14  桨叶表面点压力系数

    Figure 14.  Point pressure coefficient of blade surface

    图 15  不同旋翼间距的剖面法向力系数曲线

    Figure 15.  Section normal force coefficient of different rotor spacings

    图 16  不同旋翼间距的噪声声压时间历程

    Figure 16.  Sound pressure time history of different rotor spacings

    图 17  不同旋翼间距总噪声声压级云图

    Figure 17.  Cloud chart of sound pressure level of different rotor spacings

    表  1  基准旋翼参数

    Table  1.   Rotor parameters

    旋翼参数 数值及说明
    桨叶半径R/m 1
    桨叶片数N 4+4
    上下旋翼间距 0.14R
    转速/(r/min) 1920
    翼型 NACA0026、NACA0020、NACA0012
    扭转分布 −12°/R
    平面形状 矩形
    初始方位角差/(°) 0
    下载: 导出CSV
  • [1] 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术,2012,23(3): 9-14. DENG Jinghui. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology,2012,23(3): 9-14. (in Chinese doi: 10.3969/j.issn.1007-5453.2012.03.003

    DENG Jinghui. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology, 2012, 23(3): 9-14. (in Chinese) doi: 10.3969/j.issn.1007-5453.2012.03.003
    [2] RUDDELL A J. Advancing blade concept (ABC) TM development test program: AIAA-81-2437 [R]. Reston,US: AIAA,1981.
    [3] RUDDELL A J,MACRINO J A. Advancing Blade Concept (ABC) high speed development[C]//Proceedings of American Helicopter Society 36th Annual Forum. Washington DC: American Helicopter Society (AHS),1980: 1-13.
    [4] BAGAI A. Aerodynamic design of the X2TM technology demonstrator main rotor blade[C]//Proceedings of American Helicopter Society 64th Annual Forum,Montreal,Canada: American Helicopter Society (AHS),2008: 1-16.
    [5] LORBER P,LAWG,ONEILL J,et al. Overview of S-97 RAIDRTM scale model tests[C]//Proceedings of American Helicopter Society 72th Annual Forum. West Palm Beach,US: American Helicopter Society (AHS),2016: 143-160.
    [6] NATASH A. Aerodynamics and aeroacoustic sources of a coaxial rotor[D]. Atlanta,US: Georgia Institute of Technology,2018.
    [7] SHAMA K,BRENTNER K S,JIA Z,et al. Aeroacoustic study of lift offset coaxial rotor using free wake analysis[C] //Proceedings of American Helicopter Society 75th Annual Forum,Philadelphia,US: American Helicopter Society (AHS),2019: 400-417.
    [8] KIM H W,KENYON A R,BROWN R E,et al. Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight[J]. The Aeronautical Journal,2009,113(1140): 65-78. doi: 10.1017/S0001924000002797
    [9] WALSH G,BRENTNER K,UNIVERSITY T P S. An acoustic investigation of a coaxial helicopter in high-speed flight[C]//Proceedings of the American Helicopter Society 72nd Annual Forum,West Palm Beach,US,American Helicopter Society (AHS),2016: 1-32.
    [10] 叶靓,徐国华. 共轴式双旋翼悬停流场和气动力的CFD计算[J]. 空气动力学学报,2012,30(4): 437-442. YE Liang,XU Guohua. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J]. Acta Aerodynamica Sinica,2012,30(4): 437-442. (in Chinese doi: 10.3969/j.issn.0258-1825.2012.04.003

    YE Liang, XU Guohua. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J]. Acta Aerodynamica Sinica, 2012, 30(4): 437-442. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.04.003
    [11] 杨光,赵旭,闫修,等. 共轴刚性旋翼的悬停气动性能和流场干扰[J]. 航空动力学报,2018,33(1): 116-123. YANG Guang,ZHAO Xu,YAN Xiu,et al. Aerodynamic performance and flow interaction of the coaxial rigid rotor in hover[J]. Journal of Aerospace Power,2018,33(1): 116-123. (in Chinese doi: 10.13224/j.cnki.jasp.2018.01.014

    YANG Guang, ZHAO Xu, YAN Xiu, et al. Aerodynamic performance and flow interaction of the coaxial rigid rotor in hover[J]. Journal of Aerospace Power, 2018, 33(1): 116-123. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.01.014
    [12] 柳家齐,陈荣钱,程佳铭,等. 共轴刚性双旋翼/机身干扰流场数值模拟[J]. 航空动力学报,2019,34(11): 2377-2386. LIU Jiaqi,CHEN Rongqian,CHENG Jiaming,et al. Numerical simulation of flow field under coaxial rigid rotor/fuselage interaction[J]. Journal of Aerospace Power,2019,34(11): 2377-2386. (in Chinese doi: 10.13224/j.cnki.jasp.2019.11.009

    LIU Jiaqi, CHEN Rongqian, CHENG Jiaming, et al. Numerical simulation of flow field under coaxial rigid rotor/fuselage interaction[J]. Journal of Aerospace Power, 2019, 34(11): 2377-2386. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.11.009
    [13] 江露生,林永峰,樊枫,等. 共轴刚性旋翼悬停气动干扰特性试验研究[C]//第32届全国直升机年会论文集. 四川 绵阳: 中国航空学会,2016: 2.42-2.45. JIANG Lusheng,LIN Yongfeng,FAN Feng,et al. Experimental investigation of aerodynamic interaction characteristics of rigid coaxial rotors in hover[C]//Proceedings of the CHS (Chinese Helicopter Society) 33nd Annual Forum. Mianyang Sichuan: Chinese Society of Aeronautics and Astronautics,2016: 2.42-2.45. (in Chinese

    JIANG Lusheng, LIN Yongfeng, FAN Feng, et al. Experimental investigation of aerodynamic interaction characteristics of rigid coaxial rotors in hover[C]//Proceedings of the CHS (Chinese Helicopter Society) 33nd Annual Forum. Mianyang Sichuan: Chinese Society of Aeronautics and Astronautics, 2016: 2.42-2.45. (in Chinese)
    [14] DENG Jinghui,FAN Feng,LIU Ping’an,et al. Aerodynamic characteristics of rigid coaxial rotor by wind tunnel test and numerical calculation[J]. Chinese Journal of Aeronautics,2019,32(3): 568-576. doi: 10.1016/j.cja.2018.12.026
    [15] 杨永飞,林永峰,樊枫,等. 共轴刚性旋翼流场测量试验研究[J]. 南京航空航天大学学报,2019,51(2): 178-186. YANG Yongfei,LIN Yongfeng,FAN Feng,et al. Flow field measurement investigation on rigid coaxial rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(2): 178-186. (in Chinese doi: 10.16356/j.1005-2615.2019.02.007

    YANG Yongfei, LIN Yongfeng, FAN Feng, et al. Flow field measurement investigation on rigid coaxial rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 178-186. (in Chinese) doi: 10.16356/j.1005-2615.2019.02.007
    [16] 朱正,招启军,等. 共轴双旋翼悬停状态气动噪声特性分析[J]. 声学学报,2016,41(6): 833-842. ZHU Zheng,ZHAO Qijun,et al. Analyses on aeroacoustic characteristics of coaxial rotors in hover[J]. ACTA ACUSTICA,2016,41(6): 833-842. (in Chinese doi: 10.15949/j.cnki.0371-0025.2016.06.006

    ZHU Zheng, ZHAO Qijun, et al. Analyses on aeroacoustic characteristics of coaxial rotors in hover[J]. ACTA ACUSTICA, 2016, 41(6): 833-842. (in Chinese) doi: 10.15949/j.cnki.0371-0025.2016.06.006
    [17] 史勇杰,徐国华,招启军. 直升机气动声学[M]. 北京: 科学出版社,2019. SHI Yongjie,XU Guohua,ZHAO Qijun. Helicopter Aero-acoustics[M]. Beijing: Science Press,2019. (in Chinese

    SHI Yongjie, XU Guohua, ZHAO Qijun. Helicopter Aero-acoustics[M]. Beijing: Science Press, 2019. (in Chinese)
    [18] 江露生,曹亚雄,刘婷,等. 共轴刚性旋翼悬停状态桨叶表面压力测量试验与计算研究[J]. 北京航空航天大学学报,2021,47(12): 2484-2493. JIANG Lusheng,CAO Yaxiong,LIU Ting,et al. Experimental and computational study on blade surface pressure measurement of coaxial rigid rotor in hovering state[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(12): 2484-2493. (in Chinese doi: 10.13700/j.bh.1001-5965.2020.0669

    JIANG Lusheng, CAO Yaxiong, LIU Ting, et al. Experimental and computational study on blade surface pressure measurement of coaxial rigid rotor in hovering state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2484-2493. (in Chinese) doi: 10.13700/j.bh.1001-5965.2020.0669
    [19] MOSHER M,PETERSON R. Acoustic measurements of a full-scale coaxial helicopter: AIAA1983-722[R]. Reston,US: AIAA,1983.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  50
  • HTML浏览量:  47
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 网络出版日期:  2023-12-13

目录

    /

    返回文章
    返回