Analysis on influence of aerodynamic interference on noise characteristics of coaxial rigid rotor in hover
-
摘要:
基于计算流体动力学(CFD)方法和噪声求解的FW-H(Ffowcs Williams-Hawkings)方程计算分析了共轴刚性旋翼在悬停状态下的气动噪声,并开展了气动干扰对噪声特性影响分析。结果表明:在悬停状态下,对于上下各四片桨叶的共轴刚性旋翼,桨叶表面压力随着桨叶旋转呈周期性变化,旋转一周出现8个小周期;声源的周期性变化导致在旋翼桨盘平面内,不同方向上的观测点的声压产生的“叠加效应”不一致,上、下旋翼桨叶交汇处的噪声水平要高于其他方位角;由于载荷的时变性导致在旋转轴方向上仍有明显的辐射噪声,在该方向上的噪声声压级明显要比单旋翼大得多。随着旋翼间距增大,双旋翼之间的干扰减小,桨叶表面的法向力波动减小,声辐射球上最大噪声声压级也明显减小。
-
关键词:
- 共轴刚性旋翼 /
- 气动噪声 /
- 计算流体动力学(CFD) /
- FW-H(Ffowcs Williams-Hawkings)方程 /
- 悬停
Abstract:Based on the computational fluid dynamics (CFD) method and noise solved FW-H (Ffowcs Williams-Hawkings) equation, the aeroacoustic noise of rigid coaxial rotor was calculated in hover, and the influence of aerodynamic interference on noise characteristics was analyzed. The study indicated that: in hover stage, the surface pressure of upper and lower rotor blades changed periodically with the rotation of the blade, and there were eight small cycles in one revolution; the periodic variation of the sound source led to inconsistent “superposition effect” produced by the sound pressure at observation points in different directions in the plane of the rotor disk, and the noise level at the intersection of upper and lower rotors was higher than that at other azimuths; due to the time-varying load, there was still significant radiation noise in the direction of the rotation axis, so the noise sound pressure level in this direction was much larger than that of single rotor. With the increase of rotor spacing, aerodynamic interference between twin rotors was reduced, and the normal force fluctuation of the maximum noise sound pressure level on the sound radiation sphere also decreased.
-
表 1 基准旋翼参数
Table 1. Rotor parameters
旋翼参数 数值及说明 桨叶半径R/m 1 桨叶片数N 4+4 上下旋翼间距 0.14R 转速/(r/min) 1920 翼型 NACA0026、NACA0020、NACA0012 扭转分布 −12°/R 平面形状 矩形 初始方位角差/(°) 0 -
[1] 邓景辉. 高速直升机前行桨叶概念旋翼技术[J]. 航空科学技术,2012,23(3): 9-14. DENG Jinghui. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology,2012,23(3): 9-14. (in Chinese doi: 10.3969/j.issn.1007-5453.2012.03.003DENG Jinghui. The ABC rotor technology for high speed helicopter[J]. Aeronautical Science & Technology, 2012, 23(3): 9-14. (in Chinese) doi: 10.3969/j.issn.1007-5453.2012.03.003 [2] RUDDELL A J. Advancing blade concept (ABC) TM development test program: AIAA-81-2437 [R]. Reston,US: AIAA,1981. [3] RUDDELL A J,MACRINO J A. Advancing Blade Concept (ABC) high speed development[C]//Proceedings of American Helicopter Society 36th Annual Forum. Washington DC: American Helicopter Society (AHS),1980: 1-13. [4] BAGAI A. Aerodynamic design of the X2TM technology demonstrator main rotor blade[C]//Proceedings of American Helicopter Society 64th Annual Forum,Montreal,Canada: American Helicopter Society (AHS),2008: 1-16. [5] LORBER P,LAWG,ONEILL J,et al. Overview of S-97 RAIDRTM scale model tests[C]//Proceedings of American Helicopter Society 72th Annual Forum. West Palm Beach,US: American Helicopter Society (AHS),2016: 143-160. [6] NATASH A. Aerodynamics and aeroacoustic sources of a coaxial rotor[D]. Atlanta,US: Georgia Institute of Technology,2018. [7] SHAMA K,BRENTNER K S,JIA Z,et al. Aeroacoustic study of lift offset coaxial rotor using free wake analysis[C] //Proceedings of American Helicopter Society 75th Annual Forum,Philadelphia,US: American Helicopter Society (AHS),2019: 400-417. [8] KIM H W,KENYON A R,BROWN R E,et al. Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight[J]. The Aeronautical Journal,2009,113(1140): 65-78. doi: 10.1017/S0001924000002797 [9] WALSH G,BRENTNER K,UNIVERSITY T P S. An acoustic investigation of a coaxial helicopter in high-speed flight[C]//Proceedings of the American Helicopter Society 72nd Annual Forum,West Palm Beach,US,American Helicopter Society (AHS),2016: 1-32. [10] 叶靓,徐国华. 共轴式双旋翼悬停流场和气动力的CFD计算[J]. 空气动力学学报,2012,30(4): 437-442. YE Liang,XU Guohua. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J]. Acta Aerodynamica Sinica,2012,30(4): 437-442. (in Chinese doi: 10.3969/j.issn.0258-1825.2012.04.003YE Liang, XU Guohua. Calculation on flow field and aerodynamic force of coaxial rotors in hover with CFD method[J]. Acta Aerodynamica Sinica, 2012, 30(4): 437-442. (in Chinese) doi: 10.3969/j.issn.0258-1825.2012.04.003 [11] 杨光,赵旭,闫修,等. 共轴刚性旋翼的悬停气动性能和流场干扰[J]. 航空动力学报,2018,33(1): 116-123. YANG Guang,ZHAO Xu,YAN Xiu,et al. Aerodynamic performance and flow interaction of the coaxial rigid rotor in hover[J]. Journal of Aerospace Power,2018,33(1): 116-123. (in Chinese doi: 10.13224/j.cnki.jasp.2018.01.014YANG Guang, ZHAO Xu, YAN Xiu, et al. Aerodynamic performance and flow interaction of the coaxial rigid rotor in hover[J]. Journal of Aerospace Power, 2018, 33(1): 116-123. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.01.014 [12] 柳家齐,陈荣钱,程佳铭,等. 共轴刚性双旋翼/机身干扰流场数值模拟[J]. 航空动力学报,2019,34(11): 2377-2386. LIU Jiaqi,CHEN Rongqian,CHENG Jiaming,et al. Numerical simulation of flow field under coaxial rigid rotor/fuselage interaction[J]. Journal of Aerospace Power,2019,34(11): 2377-2386. (in Chinese doi: 10.13224/j.cnki.jasp.2019.11.009LIU Jiaqi, CHEN Rongqian, CHENG Jiaming, et al. Numerical simulation of flow field under coaxial rigid rotor/fuselage interaction[J]. Journal of Aerospace Power, 2019, 34(11): 2377-2386. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.11.009 [13] 江露生,林永峰,樊枫,等. 共轴刚性旋翼悬停气动干扰特性试验研究[C]//第32届全国直升机年会论文集. 四川 绵阳: 中国航空学会,2016: 2.42-2.45. JIANG Lusheng,LIN Yongfeng,FAN Feng,et al. Experimental investigation of aerodynamic interaction characteristics of rigid coaxial rotors in hover[C]//Proceedings of the CHS (Chinese Helicopter Society) 33nd Annual Forum. Mianyang Sichuan: Chinese Society of Aeronautics and Astronautics,2016: 2.42-2.45. (in ChineseJIANG Lusheng, LIN Yongfeng, FAN Feng, et al. Experimental investigation of aerodynamic interaction characteristics of rigid coaxial rotors in hover[C]//Proceedings of the CHS (Chinese Helicopter Society) 33nd Annual Forum. Mianyang Sichuan: Chinese Society of Aeronautics and Astronautics, 2016: 2.42-2.45. (in Chinese) [14] DENG Jinghui,FAN Feng,LIU Ping’an,et al. Aerodynamic characteristics of rigid coaxial rotor by wind tunnel test and numerical calculation[J]. Chinese Journal of Aeronautics,2019,32(3): 568-576. doi: 10.1016/j.cja.2018.12.026 [15] 杨永飞,林永峰,樊枫,等. 共轴刚性旋翼流场测量试验研究[J]. 南京航空航天大学学报,2019,51(2): 178-186. YANG Yongfei,LIN Yongfeng,FAN Feng,et al. Flow field measurement investigation on rigid coaxial rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics,2019,51(2): 178-186. (in Chinese doi: 10.16356/j.1005-2615.2019.02.007YANG Yongfei, LIN Yongfeng, FAN Feng, et al. Flow field measurement investigation on rigid coaxial rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 178-186. (in Chinese) doi: 10.16356/j.1005-2615.2019.02.007 [16] 朱正,招启军,等. 共轴双旋翼悬停状态气动噪声特性分析[J]. 声学学报,2016,41(6): 833-842. ZHU Zheng,ZHAO Qijun,et al. Analyses on aeroacoustic characteristics of coaxial rotors in hover[J]. ACTA ACUSTICA,2016,41(6): 833-842. (in Chinese doi: 10.15949/j.cnki.0371-0025.2016.06.006ZHU Zheng, ZHAO Qijun, et al. Analyses on aeroacoustic characteristics of coaxial rotors in hover[J]. ACTA ACUSTICA, 2016, 41(6): 833-842. (in Chinese) doi: 10.15949/j.cnki.0371-0025.2016.06.006 [17] 史勇杰,徐国华,招启军. 直升机气动声学[M]. 北京: 科学出版社,2019. SHI Yongjie,XU Guohua,ZHAO Qijun. Helicopter Aero-acoustics[M]. Beijing: Science Press,2019. (in ChineseSHI Yongjie, XU Guohua, ZHAO Qijun. Helicopter Aero-acoustics[M]. Beijing: Science Press, 2019. (in Chinese) [18] 江露生,曹亚雄,刘婷,等. 共轴刚性旋翼悬停状态桨叶表面压力测量试验与计算研究[J]. 北京航空航天大学学报,2021,47(12): 2484-2493. JIANG Lusheng,CAO Yaxiong,LIU Ting,et al. Experimental and computational study on blade surface pressure measurement of coaxial rigid rotor in hovering state[J]. Journal of Beijing University of Aeronautics and Astronautics,2021,47(12): 2484-2493. (in Chinese doi: 10.13700/j.bh.1001-5965.2020.0669JIANG Lusheng, CAO Yaxiong, LIU Ting, et al. Experimental and computational study on blade surface pressure measurement of coaxial rigid rotor in hovering state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2484-2493. (in Chinese) doi: 10.13700/j.bh.1001-5965.2020.0669 [19] MOSHER M,PETERSON R. Acoustic measurements of a full-scale coaxial helicopter: AIAA1983-722[R]. Reston,US: AIAA,1983.