留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢氧燃气发生器低频燃烧稳定性仿真分析

张亚 田原 潘亮 孔维鹏

张亚, 田原, 潘亮, 等. 氢氧燃气发生器低频燃烧稳定性仿真分析[J]. 航空动力学报, 2024, 39(8):20220593 doi: 10.13224/j.cnki.jasp.20220593
引用本文: 张亚, 田原, 潘亮, 等. 氢氧燃气发生器低频燃烧稳定性仿真分析[J]. 航空动力学报, 2024, 39(8):20220593 doi: 10.13224/j.cnki.jasp.20220593
ZHANG Ya, TIAN Yuan, PAN Liang, et al. Simulation analysis of low-frequency combustion stability of a hydrogen oxygen gas generator[J]. Journal of Aerospace Power, 2024, 39(8):20220593 doi: 10.13224/j.cnki.jasp.20220593
Citation: ZHANG Ya, TIAN Yuan, PAN Liang, et al. Simulation analysis of low-frequency combustion stability of a hydrogen oxygen gas generator[J]. Journal of Aerospace Power, 2024, 39(8):20220593 doi: 10.13224/j.cnki.jasp.20220593

氢氧燃气发生器低频燃烧稳定性仿真分析

doi: 10.13224/j.cnki.jasp.20220593
详细信息
    作者简介:

    张亚(1983-),男,高级工程师,硕士,主要从事氢氧火箭发动机和燃料电池设计、仿真等研究工作。E-mail:zhangya0226@163.com

  • 中图分类号: V434.1

Simulation analysis of low-frequency combustion stability of a hydrogen oxygen gas generator

  • 摘要:

    针对某氢氧火箭发动机燃气发生器热试车参数存在约200~230 Hz较明显脉动的现象,建立了低频燃烧稳定性仿真数学模型,来分析是否发生了燃烧时滞相关的极限循环低频不稳定燃烧。不同燃烧时滞、喷注器压降和燃烧室容积条件下的仿真结果显示:由燃烧时滞引起的低频不稳定燃烧频率显著低于试验结果,试验中低频脉动可能是受到了供应管路声学频率的扰动。进一步分析表明:决定燃烧系统稳定性的关键参数是燃烧时滞与燃气停留时间的比值,当该比值大于临界值时系统趋于不稳定,相反系统趋于稳定。基于仿真数据拟合形成了系统固有频率计算的半经验公式,系统固有频率随着燃烧时滞与燃气停留时间之和增大而降低。获取了在不同压降占比下的稳定边界,随着喷注器压降占比的增大,系统由稳定转为不稳定的燃烧时滞与燃气停留时间的临界比值越大。

     

  • 图 1  燃烧温度对点火延迟的影响

    Figure 1.  Effect of combustion temperature on ignition delay

    图 2  不同喷注器模型燃气生成速率对比

    Figure 2.  Comparison of gas generation rate under different injector models

    图 3  不同喷注器模型燃烧室压力对比

    Figure 3.  Comparison of combustion chamber pressure under different injector models

    图 4  燃烧时滞对稳定性的影响

    Figure 4.  Influence of combustion delay on stability

    图 5  燃烧时滞对压力振荡频率与幅值的影响

    Figure 5.  Influence of combustion delay on frequency and amplitude of pressure oscillation

    图 6  喷注器压降对不稳定的抑制效果

    Figure 6.  Inhibitory effect of injector pressure drop on instability

    图 7  喷注器压降对压力振荡频率与幅值的影响

    Figure 7.  Influence of injector pressure drop on frequency and amplitude of pressure oscillation

    图 8  增大容积对不稳定的影响

    Figure 8.  Effect of increasing volume on instability

    图 9  增大容积对压力振荡频率与幅值的影响

    Figure 9.  Influence of increasing volume on frequency and amplitude of pressure oscillation

    图 10  不同扰动频率压力响应频谱

    Figure 10.  Pressure response spectrum of different disturbance frequencies

    图 11  不同喷注器压降条件下210 Hz扰动压力响应

    Figure 11.  Pressure response to 210 Hz disturbance under different nozzle pressure drop conditions

    图 12  燃气发生器试验压力振荡频谱

    Figure 12.  Pressure oscillation frequency spectrum of gas generator in test

    图 13  燃烧室容积对固有频率影响(τ=3 ms)

    Figure 13.  Influence of combustion volume on inherent frequency of system (τ=3 ms)

    图 14  特定压降下系统的稳定边界(τ/θg=0.51)

    Figure 14.  Stability boundary of system under a certain injector pressure drop (τ/θg=0.51)

    图 15  同步变化容积与燃烧时滞的系统固有频率(τ/θg=0.51, τ=kvt, Vc=kvtVc,0

    Figure 15.  Inherent frequency of system with synchronously varying volume and combustion delay(τ/θg=0.51, τ=kvt, Vc=kvtVc,0

    图 16  系统固有频率的主要影响因素

    Figure 16.  Main influence factors of system inherent frequency

    图 17  不同压降下系统的稳定边界

    Figure 17.  Stability boundary of system under different injector pressure drop

    图 18  不同喷注器压降下系统稳定边界的固有频率

    Figure 18.  Inherent frequency of system on stability boundary under different injector pressure drop

    表  1  模型几何参数

    Table  1.   Geometric parameters of the model

    参数 数值
    原始燃烧室容积$ {V}_{\text{c},\text{0}} $/ 10−3 m3 3.93
    喷嘴长度$ {L_{\text{i}}} $/m 0.04
    喷嘴出口面积$ {A_{\text{i}}} $/10−5 m2 7.85
    燃烧室喉部面积$ {A_{\text{t}}} $/10−4 m2 3.42
    下载: 导出CSV

    表  2  燃气发生器工况参数

    Table  2.   Working condition parameters of gas generator

    参数 数值
    平均室压$ {\bar p_{\text{c}}} $/MPa 3.2
    推进剂平均流量$ {\bar q_{m{\text{,i}}}} $/(kg/s) 0.45
    混合比$ \gamma $/1 0.9
    燃气温度$ {T_{\text{g}}} $/K 896
    燃气绝热指数$ k $/1 1.36
    喷注器流量系数$ \mu $/1 0.482
    原始喷注器压降室压占比$ \Delta {p_{\text{0}}} $/1 0.174
    原始燃气停留时间$ {\theta }_{\text{g},\text{0}} $/ms 13.6
    初始燃烧时滞 $ {\tau _{\text{0}}} $/ms 3
    下载: 导出CSV

    表  3  液氧管路声学频率与试验频率对比

    Table  3.   Comparison between acoustic frequency of the liquid oxygen pipe and test data

    参数试验1试验2试验 3
    氧头腔压力/MPa3.884.354.02
    液氧温度/K89.0888.0987.71
    声速/(m/s)930.9940.7942.2
    管道长度/m2.0472.0472.047
    管路声学频率/Hz227.4229.8230.2
    试验频率/Hz224.4225.5221.4
    下载: 导出CSV
  • [1] SUMMERFIELD M. A theory of unstable combustion in liquid propellant rocket systems[J]. Journal of the American Rocket Society,1951,21(5): 108-114. doi: 10.2514/8.4374
    [2] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors: Part Ⅰ fundamentals. low frequency instability with monopropellants[J]. Journal of the American Rocket Society,1951,21(6): 163-178. doi: 10.2514/8.4393
    [3] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors: Part Ⅱ low frequency instability with bipropellants. high frequency instability[J]. Journal of the American Rocket Society,1952,22(1): 7-16. doi: 10.2514/8.4410
    [4] KOLESNIKOV K S. Low-frequency in stability in liquid-propellant rocket motors[J]. Journal of Applied Mechanics and Technical Physics,1965,6(2): 113-123.
    [5] WENZEL L M,SZUCH J. Analysis of chugging in liquid-bipropellant rocket engines using propellants with different vaporization rates: NASA-TN D-3080[R]. Washington DC: NASA,1965.
    [6] SZUCH J,WENZEL L. Experimental verification of a double-dead-time model describing chugging in liquid bipropellant rocket engines: NASA-TN D-4564[R]. Washington DC: NASA,1968.
    [7] SZUCH J. Application of a Double-dead-time mod-el describing chugging to liquid propellant rocket engines having multielement injectors: NASA TN D-5303[R]. Washington DC: NASA,1969.
    [8] 汪洪波,王振国,孙明波. 预燃室低频不稳定燃烧仿真研究[J]. 火箭推进,2007,33(5): 22-26. WANG Hongbo,WANG Zhenguo,SUN Mingbo. Simulation investigations of low frequency combustion instability of precombustion chamber[J]. Journal of Rocket Propulsion,2007,33(5): 22-26. (in Chinese doi: 10.3969/j.issn.1672-9374.2007.05.005

    WANG Hongbo, WANG Zhenguo, SUN Mingbo. Simulation investigations of low frequency combustion instability of precombustion chamber[J]. Journal of Rocket Propulsion, 2007, 33(5): 22-26. (in Chinese) doi: 10.3969/j.issn.1672-9374.2007.05.005
    [9] 秦飞,何国强,刘佩进,等. 同轴突扩燃烧室低频不稳定燃烧数值模拟[J]. 推进技术,2008,29(4): 396-400. QIN Fei,HE Guoqiang,LIU Peijin,et al. Numerical study of low frequency combustion instability in dumpe combustor[J]. Journal of Propulsion Technology,2008,29(4): 396-400. (in Chinese doi: 10.3321/j.issn:1001-4055.2008.04.002

    QIN Fei, HE Guoqiang, LIU Peijin, et al. Numerical study of low frequency combustion instability in dumpe combustor[J]. Journal of Propulsion Technology, 2008, 29(4): 396-400. (in Chinese) doi: 10.3321/j.issn:1001-4055.2008.04.002
    [10] 秦飞,何国强,刘佩进. 突扩燃烧室低频燃烧不稳定控制方法[J]. 推进技术,2011,32(1): 59-64. QIN Fei,HE Guoqiang,LIU Peijin. Control methods of low frequency combustion instabilities in a dump combustor[J]. Journal of Propulsion Technology,2011,32(1): 59-64. (in Chinese doi: 10.13675/j.cnki.tjjs.2011.01.007

    QIN Fei, HE Guoqiang, LIU Peijin. Control methods of low frequency combustion instabilities in a dump combustor[J]. Journal of Propulsion Technology, 2011, 32(1): 59-64. (in Chinese) doi: 10.13675/j.cnki.tjjs.2011.01.007
    [11] 于涵,严宇,杨宝娥,等. 液氧/液甲烷双离心式喷嘴富氧低频燃烧不稳定性研究[J]. 推进技术,2022,43(12): 212-219. YU Han,YAN Yu,YANG Baoe,et al. Low frequency combustion instability of LOX/LCH4Bi-swirl injector under oxygen rich conditions[J]. Journal of Propulsion Technology,2022,43(12): 212-219. (in Chinese doi: 10.13675/j.cnki.tjjs.210773

    YU Han, YAN Yu, YANG Baoe, et al. Low frequency combustion instability of LOX/LCH4Bi-swirl injector under oxygen rich conditions[J]. Journal of Propulsion Technology, 2022, 43(12): 212-219. (in Chinese) doi: 10.13675/j.cnki.tjjs.210773
    [12] 吴宝元,葛李虎,谭永华,等. 富氧预燃室高压缩尺试验研究[J]. 推进技术,2003,24(2): 104-108. WU Baoyuan,GE Lihu,TAN Yonghua,et al. Experimental investigation of oxidizer-rich subscale preburner[J]. Journal of Propulsion Technology,2003,24(2): 104-108. (in Chinese doi: 10.3321/j.issn:1001-4055.2003.02.002

    WU Baoyuan, GE Lihu, TAN Yonghua, et al. Experimental investigation of oxidizer-rich subscale preburner[J]. Journal of Propulsion Technology, 2003, 24(2): 104-108. (in Chinese) doi: 10.3321/j.issn:1001-4055.2003.02.002
    [13] 陈展,赫伟涛,王可立. 某发动机低频不稳定燃烧的消除[J]. 火箭推进,2011,37(6): 26-29. CHEN Zhan,HE Weitao,WANG Keli. Elimination of low-frequency unstable combustion phenomenon of a certain engine[J]. Journal of Rocket Propulsion,2011,37(6): 26-29. (in Chinese doi: 10.3969/j.issn.1672-9374.2011.06.006

    CHEN Zhan, HE Weitao, WANG Keli. Elimination of low-frequency unstable combustion phenomenon of a certain engine[J]. Journal of Rocket Propulsion, 2011, 37(6): 26-29. (in Chinese) doi: 10.3969/j.issn.1672-9374.2011.06.006
    [14] 赵震,郭志辉,黄勇,等. 模型燃烧室低频不稳定燃烧的初步探讨[J]. 航空动力学报,2003,18(6): 803-807. ZHAO Zhen,GUO Zhihui,HUANG Yong,et al. A preliminary investigation of low-frequency combustion instability in a model combustor[J]. Journal of Aerospace Power,2003,18(6): 803-807. (in Chinese doi: 10.3969/j.issn.1000-8055.2003.06.018

    ZHAO Zhen, GUO Zhihui, HUANG Yong, et al. A preliminary investigation of low-frequency combustion instability in a model combustor[J]. Journal of Aerospace Power, 2003, 18(6): 803-807. (in Chinese) doi: 10.3969/j.issn.1000-8055.2003.06.018
    [15] 张新桥,李清廉,沈赤兵,等. 燃气发生器低频非稳态燃烧统计分析[J]. 国防科技大学学报,2016,38(2): 6-11. ZHANG Xinqiao,LI Qinglian,SHEN Chibing,et al. Statistical analysis of low frequency unsteady combustion of gas generator[J]. Journal of National University of Defense Technology,2016,38(2): 6-11. (in Chinese doi: 10.11887/j.cn.201602002

    ZHANG Xinqiao, LI Qinglian, SHEN Chibing, et al. Statistical analysis of low frequency unsteady combustion of gas generator[J]. Journal of National University of Defense Technology, 2016, 38(2): 6-11. (in Chinese) doi: 10.11887/j.cn.201602002
    [16] MARTYNENKO V V,PENYAZ'KOV O G,RAGOTNER K A,et al. High-temperature ignition of hydrogen and air at high pressures downstream of the reflected shock wave[J]. Journal of Engineering Physics and Thermophysics,2004,77(4): 785-793. doi: 10.1023/B:JOEP.0000045164.40205.6f
    [17] 张亚,潘刚,丁兆波,等. 离心喷嘴声学相关热试验频率分析与计算[J]. 航空动力学报,2022,37(7): 1478-1486. ZHANG Ya,PAN Gang,DING Zhaobo,et al. Analysis and calculation of acoustic frequency of swirl injector in hot-fire testing[J]. Journal of Aerospace Power,2022,37(7): 1478-1486. (in Chinese doi: 10.13224/j.cnki.jasp.20210416

    ZHANG Ya, PAN Gang, DING Zhaobo, et al. Analysis and calculation of acoustic frequency of swirl injector in hot-fire testing[J]. Journal of Aerospace Power, 2022, 37(7): 1478-1486. (in Chinese) doi: 10.13224/j.cnki.jasp.20210416
    [18] 张亚,田原,潘亮. 液氧温度仿真及其对离心喷嘴声学频率影响[J]. 航空动力学报,2023,38(11): 2785-2790. ZHANG Ya,TIAN Yuan,PAN Liang. Simulation of liquid oxy-gen temperature and its influence on acoustic frequency of swirl injector[J]. Journal of Aerospace Power,2023,38(11): 2785-2790. (in Chinese doi: 10.13224/j.cnki.jasp.20220022

    ZHANG Ya, TIAN Yuan, PAN Liang. Simulation of liquid oxy-gen temperature and its influence on acoustic frequency of swirl injector[J]. Journal of Aerospace Power, 2023, 38(11): 2785-2790. (in Chinese) doi: 10.13224/j.cnki.jasp.20220022
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  94
  • HTML浏览量:  69
  • PDF量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 网络出版日期:  2023-12-13

目录

    /

    返回文章
    返回