Simulation analysis of low-frequency combustion stability of a hydrogen oxygen gas generator
-
摘要:
针对某氢氧火箭发动机燃气发生器热试车参数存在约200~230 Hz较明显脉动的现象,建立了低频燃烧稳定性仿真数学模型,来分析是否发生了燃烧时滞相关的极限循环低频不稳定燃烧。不同燃烧时滞、喷注器压降和燃烧室容积条件下的仿真结果显示:由燃烧时滞引起的低频不稳定燃烧频率显著低于试验结果,试验中低频脉动可能是受到了供应管路声学频率的扰动。进一步分析表明:决定燃烧系统稳定性的关键参数是燃烧时滞与燃气停留时间的比值,当该比值大于临界值时系统趋于不稳定,相反系统趋于稳定。基于仿真数据拟合形成了系统固有频率计算的半经验公式,系统固有频率随着燃烧时滞与燃气停留时间之和增大而降低。获取了在不同压降占比下的稳定边界,随着喷注器压降占比的增大,系统由稳定转为不稳定的燃烧时滞与燃气停留时间的临界比值越大。
Abstract:In view of the obvious pressure oscillations of 200−230 Hz in the hot test of a hydrogen oxygen rocket engine gas generator, a low frequency combustion stability simulation mathematical model was established to analyze whether there is low-frequency unstable combustion phenomenon of limit cycle related to combustion delay. Simulation results under different combustion time delay, pressure drop of injector and combustion chamber volume showed that the oscillations frequency related to the combustion time delay was significantly lower than the test data. The low-frequency fluctuation in the test data may be excited by the acoustic frequency of the feed line. Further analysis showed that the key parameter to determine the stability of the system is the ratio of combustion delay to gas residence time. When the ratio was greater than a critical value, the system became unstable, otherwise the system became stable. Based on the simulation data fitting, a semi empirical formula for calculating the inherent frequency of the system was formed. The inherent frequency of the system decreased with the increase of the sum of combustion delay and gas residence time. The stable boundary of the system under different injector pressure drops was obtained. With the increase of pressure drop ratio, the critical ratio of combustion delay and gas residence time from stable to unstable became larger.
-
表 1 模型几何参数
Table 1. Geometric parameters of the model
参数 数值 原始燃烧室容积$ {V}_{\text{c},\text{0}} $/ 10−3 m3 3.93 喷嘴长度$ {L_{\text{i}}} $/m 0.04 喷嘴出口面积$ {A_{\text{i}}} $/10−5 m2 7.85 燃烧室喉部面积$ {A_{\text{t}}} $/10−4 m2 3.42 表 2 燃气发生器工况参数
Table 2. Working condition parameters of gas generator
参数 数值 平均室压$ {\bar p_{\text{c}}} $/MPa 3.2 推进剂平均流量$ {\bar q_{m{\text{,i}}}} $/(kg/s) 0.45 混合比$ \gamma $/1 0.9 燃气温度$ {T_{\text{g}}} $/K 896 燃气绝热指数$ k $/1 1.36 喷注器流量系数$ \mu $/1 0.482 原始喷注器压降室压占比$ \Delta {p_{\text{0}}} $/1 0.174 原始燃气停留时间$ {\theta }_{\text{g},\text{0}} $/ms 13.6 初始燃烧时滞 $ {\tau _{\text{0}}} $/ms 3 表 3 液氧管路声学频率与试验频率对比
Table 3. Comparison between acoustic frequency of the liquid oxygen pipe and test data
参数 试验1 试验2 试验 3 氧头腔压力/MPa 3.88 4.35 4.02 液氧温度/K 89.08 88.09 87.71 声速/(m/s) 930.9 940.7 942.2 管道长度/m 2.047 2.047 2.047 管路声学频率/Hz 227.4 229.8 230.2 试验频率/Hz 224.4 225.5 221.4 -
[1] SUMMERFIELD M. A theory of unstable combustion in liquid propellant rocket systems[J]. Journal of the American Rocket Society,1951,21(5): 108-114. doi: 10.2514/8.4374 [2] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors: Part Ⅰ fundamentals. low frequency instability with monopropellants[J]. Journal of the American Rocket Society,1951,21(6): 163-178. doi: 10.2514/8.4393 [3] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors: Part Ⅱ low frequency instability with bipropellants. high frequency instability[J]. Journal of the American Rocket Society,1952,22(1): 7-16. doi: 10.2514/8.4410 [4] KOLESNIKOV K S. Low-frequency in stability in liquid-propellant rocket motors[J]. Journal of Applied Mechanics and Technical Physics,1965,6(2): 113-123. [5] WENZEL L M,SZUCH J. Analysis of chugging in liquid-bipropellant rocket engines using propellants with different vaporization rates: NASA-TN D-3080[R]. Washington DC: NASA,1965. [6] SZUCH J,WENZEL L. Experimental verification of a double-dead-time model describing chugging in liquid bipropellant rocket engines: NASA-TN D-4564[R]. Washington DC: NASA,1968. [7] SZUCH J. Application of a Double-dead-time mod-el describing chugging to liquid propellant rocket engines having multielement injectors: NASA TN D-5303[R]. Washington DC: NASA,1969. [8] 汪洪波,王振国,孙明波. 预燃室低频不稳定燃烧仿真研究[J]. 火箭推进,2007,33(5): 22-26. WANG Hongbo,WANG Zhenguo,SUN Mingbo. Simulation investigations of low frequency combustion instability of precombustion chamber[J]. Journal of Rocket Propulsion,2007,33(5): 22-26. (in Chinese doi: 10.3969/j.issn.1672-9374.2007.05.005WANG Hongbo, WANG Zhenguo, SUN Mingbo. Simulation investigations of low frequency combustion instability of precombustion chamber[J]. Journal of Rocket Propulsion, 2007, 33(5): 22-26. (in Chinese) doi: 10.3969/j.issn.1672-9374.2007.05.005 [9] 秦飞,何国强,刘佩进,等. 同轴突扩燃烧室低频不稳定燃烧数值模拟[J]. 推进技术,2008,29(4): 396-400. QIN Fei,HE Guoqiang,LIU Peijin,et al. Numerical study of low frequency combustion instability in dumpe combustor[J]. Journal of Propulsion Technology,2008,29(4): 396-400. (in Chinese doi: 10.3321/j.issn:1001-4055.2008.04.002QIN Fei, HE Guoqiang, LIU Peijin, et al. Numerical study of low frequency combustion instability in dumpe combustor[J]. Journal of Propulsion Technology, 2008, 29(4): 396-400. (in Chinese) doi: 10.3321/j.issn:1001-4055.2008.04.002 [10] 秦飞,何国强,刘佩进. 突扩燃烧室低频燃烧不稳定控制方法[J]. 推进技术,2011,32(1): 59-64. QIN Fei,HE Guoqiang,LIU Peijin. Control methods of low frequency combustion instabilities in a dump combustor[J]. Journal of Propulsion Technology,2011,32(1): 59-64. (in Chinese doi: 10.13675/j.cnki.tjjs.2011.01.007QIN Fei, HE Guoqiang, LIU Peijin. Control methods of low frequency combustion instabilities in a dump combustor[J]. Journal of Propulsion Technology, 2011, 32(1): 59-64. (in Chinese) doi: 10.13675/j.cnki.tjjs.2011.01.007 [11] 于涵,严宇,杨宝娥,等. 液氧/液甲烷双离心式喷嘴富氧低频燃烧不稳定性研究[J]. 推进技术,2022,43(12): 212-219. YU Han,YAN Yu,YANG Baoe,et al. Low frequency combustion instability of LOX/LCH4Bi-swirl injector under oxygen rich conditions[J]. Journal of Propulsion Technology,2022,43(12): 212-219. (in Chinese doi: 10.13675/j.cnki.tjjs.210773YU Han, YAN Yu, YANG Baoe, et al. Low frequency combustion instability of LOX/LCH4Bi-swirl injector under oxygen rich conditions[J]. Journal of Propulsion Technology, 2022, 43(12): 212-219. (in Chinese) doi: 10.13675/j.cnki.tjjs.210773 [12] 吴宝元,葛李虎,谭永华,等. 富氧预燃室高压缩尺试验研究[J]. 推进技术,2003,24(2): 104-108. WU Baoyuan,GE Lihu,TAN Yonghua,et al. Experimental investigation of oxidizer-rich subscale preburner[J]. Journal of Propulsion Technology,2003,24(2): 104-108. (in Chinese doi: 10.3321/j.issn:1001-4055.2003.02.002WU Baoyuan, GE Lihu, TAN Yonghua, et al. Experimental investigation of oxidizer-rich subscale preburner[J]. Journal of Propulsion Technology, 2003, 24(2): 104-108. (in Chinese) doi: 10.3321/j.issn:1001-4055.2003.02.002 [13] 陈展,赫伟涛,王可立. 某发动机低频不稳定燃烧的消除[J]. 火箭推进,2011,37(6): 26-29. CHEN Zhan,HE Weitao,WANG Keli. Elimination of low-frequency unstable combustion phenomenon of a certain engine[J]. Journal of Rocket Propulsion,2011,37(6): 26-29. (in Chinese doi: 10.3969/j.issn.1672-9374.2011.06.006CHEN Zhan, HE Weitao, WANG Keli. Elimination of low-frequency unstable combustion phenomenon of a certain engine[J]. Journal of Rocket Propulsion, 2011, 37(6): 26-29. (in Chinese) doi: 10.3969/j.issn.1672-9374.2011.06.006 [14] 赵震,郭志辉,黄勇,等. 模型燃烧室低频不稳定燃烧的初步探讨[J]. 航空动力学报,2003,18(6): 803-807. ZHAO Zhen,GUO Zhihui,HUANG Yong,et al. A preliminary investigation of low-frequency combustion instability in a model combustor[J]. Journal of Aerospace Power,2003,18(6): 803-807. (in Chinese doi: 10.3969/j.issn.1000-8055.2003.06.018ZHAO Zhen, GUO Zhihui, HUANG Yong, et al. A preliminary investigation of low-frequency combustion instability in a model combustor[J]. Journal of Aerospace Power, 2003, 18(6): 803-807. (in Chinese) doi: 10.3969/j.issn.1000-8055.2003.06.018 [15] 张新桥,李清廉,沈赤兵,等. 燃气发生器低频非稳态燃烧统计分析[J]. 国防科技大学学报,2016,38(2): 6-11. ZHANG Xinqiao,LI Qinglian,SHEN Chibing,et al. Statistical analysis of low frequency unsteady combustion of gas generator[J]. Journal of National University of Defense Technology,2016,38(2): 6-11. (in Chinese doi: 10.11887/j.cn.201602002ZHANG Xinqiao, LI Qinglian, SHEN Chibing, et al. Statistical analysis of low frequency unsteady combustion of gas generator[J]. Journal of National University of Defense Technology, 2016, 38(2): 6-11. (in Chinese) doi: 10.11887/j.cn.201602002 [16] MARTYNENKO V V,PENYAZ'KOV O G,RAGOTNER K A,et al. High-temperature ignition of hydrogen and air at high pressures downstream of the reflected shock wave[J]. Journal of Engineering Physics and Thermophysics,2004,77(4): 785-793. doi: 10.1023/B:JOEP.0000045164.40205.6f [17] 张亚,潘刚,丁兆波,等. 离心喷嘴声学相关热试验频率分析与计算[J]. 航空动力学报,2022,37(7): 1478-1486. ZHANG Ya,PAN Gang,DING Zhaobo,et al. Analysis and calculation of acoustic frequency of swirl injector in hot-fire testing[J]. Journal of Aerospace Power,2022,37(7): 1478-1486. (in Chinese doi: 10.13224/j.cnki.jasp.20210416ZHANG Ya, PAN Gang, DING Zhaobo, et al. Analysis and calculation of acoustic frequency of swirl injector in hot-fire testing[J]. Journal of Aerospace Power, 2022, 37(7): 1478-1486. (in Chinese) doi: 10.13224/j.cnki.jasp.20210416 [18] 张亚,田原,潘亮. 液氧温度仿真及其对离心喷嘴声学频率影响[J]. 航空动力学报,2023,38(11): 2785-2790. ZHANG Ya,TIAN Yuan,PAN Liang. Simulation of liquid oxy-gen temperature and its influence on acoustic frequency of swirl injector[J]. Journal of Aerospace Power,2023,38(11): 2785-2790. (in Chinese doi: 10.13224/j.cnki.jasp.20220022ZHANG Ya, TIAN Yuan, PAN Liang. Simulation of liquid oxy-gen temperature and its influence on acoustic frequency of swirl injector[J]. Journal of Aerospace Power, 2023, 38(11): 2785-2790. (in Chinese) doi: 10.13224/j.cnki.jasp.20220022