Numerical simulation of mixing characteristic of rear variable area bypass injector with lobed structure
-
摘要:
为进一步提升变循环发动机后可变面积后涵道引射器(RVABI)内外涵道间气流的掺混效率,改善掺混气流间的速度均匀度,提出了一种带波瓣结构的可变面积涵道引射器外涵面积调节方法,并通过数值模拟手段与两种基本模型在总压损失、热混合效率、速度分布和漩涡演化等不同方面进行分析对比。结果表明:引入波瓣结构的可变面积涵道引射器外涵面积调节方法,显著改善了流场速度均匀度,极大的提升了内外涵气流混合的热混合效率。且随着涵道比增加,相比于基准构型带,波瓣结构的面积调节方法的流向涡强度逐渐增大,热混合效率提升的更加明显,掺混的程度取决于流向涡的尺度和影响范围,可以进一步优化波瓣和对应的面积调节机构进一步提升调节性能。
Abstract:In order to improve the mixing efficiency of the air flow between the inner and outer bypasses of the rear variable area bypass injector (RVABI) in the variable cycle engine, and to improve the velocity uniformity between the mixed air flows, a method of adjusting the outer bypass area of the RVABI with lobed structure was proposed. By means of numerical simulation, the total pressure loss, thermal mixing efficiency, velocity distribution and vortex evolution were studied and analyzed at the bypass ratio of 0.11−0.23, and the two reference models were compared. The results showed that the method of adjusting the outer bypass area of the variable area bypass injector by introducing the lobed structure can significantly improve the uniformity of the flow field velocity and greatly improve the thermal mixing efficiency of the inner and outer bypasses. And with the increase of the bypass ratio, compared with the reference configuration band, the thermal mixing efficiency of the area adjustment method of the lobed structure was improved more significantly. The mixing degree depended on the scale and influence range of the flow vortex; the lobed shape and corresponding area can be optimized synchronously to further improve the regulating performance.
-
表 1 气体组分及其质量分数
Table 1. Mass fractions of the gas species
气体组分 内涵入口 外涵入口 N2 0.7501 0.7552 O2 0.1468 0.2200 CO2 0.0741 0.0099 H2O 0.0290 0.0049 -
[1] VDOVIAK J W,KNOTT P R,EBACKER J J. Aerodynamic/acoustic performance of YJ101/double bypass VCE with co-annular plug nozzle: NASA CR-159869[R]. Washington DC: NASA,1981. [2] FRENCH M,ALLEN C. NASA VCE test bed engine aerodynamic performance characteristics and test results: AIAA1981-1594[R]. Reston,US: AIAA,1981. [3] WAGENKNECHT C D,FAUST G K. Individual bypass injector valves for a double bypass variable cycle turbofan engine: US4175384[P]. 1979-11-27. [4] SIMMONS J R. Variable cycle engine with split fan section: US4068471[P]. 1978-01-17. [5] RUNDELL D J,MCHUGH D P,FOSTER T,et al. Variable mixer propulsion cycle: US4069661[P]. 1978-01-24. [6] ERICKSON K,YOUNT R E. Gas turbine engine with bypass mixer: US20120279198[P]. 2012-11-08. [7] VDOVIAK J W,MCHUGH D P. Variable slot bypass injector system: US5694767[P]. 1997-12-09. [8] JOHNSON K L,CORSMEIER D M,WEAVER W L,et al. Variable area bypass injector: US5343697[P]. 1994-09-06. [9] 苟学中,周文祥,黄金泉. 变循环发动机部件级建模技术[J]. 航空动力学报,2013,28(1): 104-111. GOU Xuezhong,ZHOU Wenxiang,HUANG Jinquan. Component-level modeling technology for variable cycle engine[J]. Journal of Aerospace Power,2013,28(1): 104-111. (in Chinese doi: 10.13224/j.cnki.jasp.2013.01.018 GOU Xuezhong, ZHOU Wenxiang, HUANG Jinquan . Component-level modeling technology for variable cycle engine[J]. Journal of Aerospace Power,2013 ,28 (1 ):104 -111 . (in Chinese) doi: 10.13224/j.cnki.jasp.2013.01.018[10] 王元,张平平,李秋红,等. 变循环发动机建模方法研究及验证[J]. 航空动力学报,2014,29(11): 2643-2651. WANG Yuan,ZHANG Pingping,LI Qiuhong,et al. Research and validation of variable cycle engine modeling method[J]. Journal of Aerospace Power,2014,29(11): 2643-2651. (in Chinese doi: 10.13224/j.cnki.jasp.2014.11.014 WANG Yuan, ZHANG Pingping, LI Qiuhong, et al . Research and validation of variable cycle engine modeling method[J]. Journal of Aerospace Power,2014 ,29 (11 ):2643 -2651 . (in Chinese) doi: 10.13224/j.cnki.jasp.2014.11.014[11] 周红,王占学,刘增文,等. 可变面积涵道引射器对变循环发动机性能影响[J]. 航空动力学报,2016,31(12): 2842-2850. ZHOU Hong,WANG Zhanxue,LIU Zengwen,et al. Impact of variable area bypass injector on variable cycle engine performance[J]. Journal of Aerospace Power,2016,31(12): 2842-2850. (in Chinese doi: 10.13224/j.cnki.jasp.2016.12.004 ZHOU Hong, WANG Zhanxue, LIU Zengwen, et al . Impact of variable area bypass injector on variable cycle engine performance[J]. Journal of Aerospace Power,2016 ,31 (12 ):2842 -2850 . (in Chinese) doi: 10.13224/j.cnki.jasp.2016.12.004[12] 窦健. 变循环发动机后涵道引射器设计与气动性能研究[D]. 南京: 南京航空航天大学,2019. DOU Jian. Research on design and aerodynamic performance for variable cycle engine rear bypass injector[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2019. (in ChineseDOU Jian. Research on design and aerodynamic performance for variable cycle engine rear bypass injector[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese) [13] HUANG Guoping,LI Chao,XIA Chen,et al. Investigations of entrainment characteristics and shear-layer vortices evolution in an axisymmetric rear variable area bypass injector[J]. Chinese Journal of Aeronautics,2022,35(4): 230-244. doi: 10.1016/j.cja.2021.10.025 [14] 杜力伟. 波瓣混合器内扩张角对一体化加力燃烧室性能的影响[J]. 科学技术与工程,2020,20(12): 4992-4999. DU Liwei. Influence of lobe inward penetration angle on performance of integrated afterburner[J]. Science Technology and Engineering,2020,20(12): 4992-4999. (in Chinese doi: 10.3969/j.issn.1671-1815.2020.12.055 DU Liwei . Influence of lobe inward penetration angle on performance of integrated afterburner[J]. Science Technology and Engineering,2020 ,20 (12 ):4992 -4999 . (in Chinese) doi: 10.3969/j.issn.1671-1815.2020.12.055[15] HU Hui,SAGA T,KOBAYASHI T,et al. Research on the vorticial and turbulent structures in the lobed jet flow using laser induced fluorescence and particle image velocimetry techniques[J]. Measurement Science and Technology,2000,11(6): 698-711. doi: 10.1088/0957-0233/11/6/313 [16] COOPER N,MERATI P,HU Hui. Numerical simulation of the vorticial structures in a lobed jet mixing flow: AIAA2005-635 [R]. Reston,US: AIAA,2005. [17] FROST T H. Practical bypass mixing systems for fan jet aero engines[J]. Aeronautical Quarterly,1966,17(2): 141-160. doi: 10.1017/S0001925900003760 [18] XIE Yi,LIU Youhong. A modified thermal mixing efficiency and its application to lobed mixer nozzle for aero-engines[J]. Heat Transfer Research,2011,42(4): 317-335. doi: 10.1615/HeatTransRes.2011003398 [19] 宋宇宽,雷志军,张燕峰,等. 速度比与进口预旋耦合作用下波瓣混合器射流掺混机理分析[J]. 航空发动机,2022,48(3): 25-33. SONG Yukuan,LEI Zhijun,ZHANG Yanfeng,et al. Analysis of jet mixing mechanism of lobed mixer under the coupling of velocity ratio and inlet swirl[J]. Aeroengine,2022,48(3): 25-33. (in Chinese doi: 10.13477/j.cnki.aeroengine.2022.03.005 SONG Yukuan, LEI Zhijun, ZHANG Yanfeng, et al . Analysis of jet mixing mechanism of lobed mixer under the coupling of velocity ratio and inlet swirl[J]. Aeroengine,2022 ,48 (3 ):25 -33 . (in Chinese) doi: 10.13477/j.cnki.aeroengine.2022.03.005