留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带数字电子备份的发动机控制系统设计与验证

李琛 文彬鹤 左伟 高敏明 韩崇鹏

李琛, 文彬鹤, 左伟, 等. 带数字电子备份的发动机控制系统设计与验证[J]. 航空动力学报, 2024, 39(8):20220602 doi: 10.13224/j.cnki.jasp.20220602
引用本文: 李琛, 文彬鹤, 左伟, 等. 带数字电子备份的发动机控制系统设计与验证[J]. 航空动力学报, 2024, 39(8):20220602 doi: 10.13224/j.cnki.jasp.20220602
LI Chen, WEN Binhe, ZUO Wei, et al. Design and verification of engine control system with digital electronic backup[J]. Journal of Aerospace Power, 2024, 39(8):20220602 doi: 10.13224/j.cnki.jasp.20220602
Citation: LI Chen, WEN Binhe, ZUO Wei, et al. Design and verification of engine control system with digital electronic backup[J]. Journal of Aerospace Power, 2024, 39(8):20220602 doi: 10.13224/j.cnki.jasp.20220602

带数字电子备份的发动机控制系统设计与验证

doi: 10.13224/j.cnki.jasp.20220602
基金项目: 国家自然科学基金(61890925); 国家科技重大专项(2017-Ⅴ-0015-0067)
详细信息
    作者简介:

    李琛(1990-),男,高级工程师,硕士,主要从事航空发动机控制系统研究。E-mail:LICHEN_AECC@163.com

  • 中图分类号: V233.7

Design and verification of engine control system with digital electronic backup

  • 摘要:

    在常规双余度数字电子控制系统基础上,提出了一种带数字电子备份的发动机控制系统方案。在主控系统失效时,数字电子备份系统可接替主控系统实现发动机各项功能的控制,提升了系统的任务可靠性;将备份系统内置于液压机械组件内部,提升系统的抗电子干扰和耐电磁能力。半物理和整机验证结果表明:主、备系统之间以及系统与发动机之间工作匹配良好;主备切换功能正常,切换过程参数平稳过渡,巡航状态下切换,推力扰动小于1.5%;备份系统各项控制功能正常,主控参数压比控制精度小于0.1、摆动量小于0.1,导叶控制精度小于0.15°、摆动量小于0.2°,加、减速过程燃油和导叶跟随良好,稳态、过渡态性能均满足发动机使用要求;散热设计满足器件的使用要求。

     

  • 图 1  系统总体架构图

    Figure 1.  Overall system architecture

    图 2  备份控制器架构

    Figure 2.  Backup controller architecture

    图 3  交流发电机原理图

    Figure 3.  Schematic diagram of alternating current generator

    图 4  机械液压组件构成及外部交联框图

    Figure 4.  Composition of mechanical hydraulic components and external crosslinking block diagram

    图 5  内置发电机和控制器散热原理

    Figure 5.  Heat dissipation principle of built-in generator and controller

    图 6  发电机温度分布仿真结果

    Figure 6.  Simulation results of generator temperature distribution

    图 7  散热管路示意图

    Figure 7.  Schematic diagram of heat dissipation pipeline

    图 8  控制器温度分布仿真结果

    Figure 8.  Simulation results of controller temperature distribution

    图 9  半物理慢车状态下切换参数变化过程

    Figure 9.  Change process of switching parameters under idle state in semi-physical test

    图 10  半物理巡航状态切换参数变化过程

    Figure 10.  Change process of cruise state switching parameters in semi-physical test

    图 11  半物理稳态控制效果

    Figure 11.  Steady state control effect in semi-physical test

    图 12  半物理加减速控制效果

    Figure 12.  Acceleration and deceleration control effect in semi-physical test

    图 13  整机慢车切换参数变化过程

    Figure 13.  Change process of idle switching parameters of the whole machine

    图 14  整机巡航状态切换推力变化情况

    Figure 14.  Thrust change during cruise state switching of the whole machine

    图 15  整机稳态控制效果

    Figure 15.  Steady state control effect of the whole machine

    图 16  整机过渡态压比跟随情况

    Figure 16.  Pressure ratio following of the whole machine in transition state

    图 17  整机过渡态燃油和导叶控制跟随情况

    Figure 17.  Control and follow-up of fuel and guide vane in the transition state of the whole machine

    图 18  备份控制器内部温度变化

    Figure 18.  Backup controller internal temperature change

    表  1  两种备份方案对比

    Table  1.   Comparison of two backup schemes

    对比项目 带机械液压备份系统 带数字电子备份系统
    任务可靠性 增加余度,相对于双余度数字电子控制系统任务
    可靠性提升;但由于是机械液压备份,在主系统
    部分失效时,无法借用机械液压备份系统部件
    进行重构
    增加余度,相对于双余度数字电子控制系统任务可靠性提升;且在主系统部分失效时,主系统可通过控制备份系统的资源实现重构,提升主系统的任务可靠性
    耐强电磁能力 具有较强的耐电磁能力 通过机械液压组件壳体的金属屏蔽作用,具有较强的耐电磁能力
    控制精度
    控制规律修改 更改机械结构,不易修改,且需通过调整钉调整,
    调整精度差
    更改控制软件,修改方便
    结构复杂性 复杂 简单
    质量 相较于电备份系统增加4.5 kg 较轻
    故障前工作时长/105 h 2.4 1.9
    维护性 不易于维护检测,不易于故障排查 专用维护接口,通过自身的BIT检测模块可快速定位故障,在使用时可通过自检向主控制器发送自身状态信息
    研制周期 18个月 10个月
    下载: 导出CSV

    表  2  主、备系统控制规律对比

    Table  2.   Comparison of control laws between main and standby systems

    序号 实现的功能 主控规律 备份规律
    1 地面起动功能 燃油开环控制
    2 空中起动功能 通过起动模式确认,
    自动实现空中起动
    当发动机N2转速降低到规定值以下时,备份控制器自动进入
    加速供油逻辑,同时接通手动点火,实现发动机空中起动
    3 稳态控制 转速闭环控制 压比闭环控制
    4 过渡态控制 加减速油气比开环控制 加减速油气比开环控制
    5 可调导叶控制 高压转子换算转速控制 压比进行控制
    6 放气控制 高压转子换算转速控制 按压比进行控制
    下载: 导出CSV
  • [1] 张绍基. 航空发动机控制系统的研发与展望[J]. 航空动力学报,2004,19(3): 375-382. ZHANG Shaoji. A review of aeroengine control system[J]. Journal of Aerospace Power,2004,19(3): 375-382. (in Chinese

    ZHANG Shaoji. A review of aeroengine control system[J]. Journal of Aerospace Power, 2004, 19(3): 375-382. (in Chinese)
    [2] 孙健国. 面向21世纪航空动力控制展望[J]. 航空动力学报,2001,16(2): 97-102. SUN Jianguo. Prospects of the aeroengine control development in the early time of the 21st century[J]. Journal of Aerospace Power,2001,16(2): 97-102. (in Chinese

    SUN Jianguo. Prospects of the aeroengine control development in the early time of the 21st century[J]. Journal of Aerospace Power, 2001, 16(2): 97-102. (in Chinese)
    [3] 孙志岩. 航空发动机控制系统发展概述[J]. 测控技术,2019,38(6): 1-4. SUN Zhiyan. Overview of the development of aero-engine control system[J]. Measurement and Control Technology,2019,38(6): 1-4. (in Chinese

    SUN Zhiyan. Overview of the development of aero-engine control system[J]. Measurement and Control Technology, 2019, 38(6): 1-4. (in Chinese)
    [4] 孙红鹏. 核电磁脉冲对飞机及机载电子设备的威胁和防护试验[J]. 飞机设计,2008,28(5): 59-61,75. SUN Hongpeng. Menace and defense test of HEMP for airplane and airborne electronic equipment[J]. Aircraft Design,2008,28(5): 59-61,75. (in Chinese

    SUN Hongpeng. Menace and defense test of HEMP for airplane and airborne electronic equipment[J]. Aircraft Design, 2008, 28(5): 59-61, 75. (in Chinese)
    [5] 孙永军. 电磁脉冲武器原理及其防护[J]. 空间电子技术,2004,1(3): 21-24. SUN Yongjun. Principle and protection of electromagnetic pulse weapon[J]. Space Electronic Technology,2004,1(3): 21-24. (in Chinese

    SUN Yongjun. Principle and protection of electromagnetic pulse weapon[J]. Space Electronic Technology, 2004, 1(3): 21-24. (in Chinese)
    [6] 周超,彭卫东,何建,等. 孔缝对航空器电子设备舱屏蔽效能的影响[J]. 科学技术与工程,2012,12(24): 6107-6112. ZHOU Chao,PENG Weidong,HE Jian,et al. Influence of apertures in the avionics cabin on electromagnetic shielding effectiveness[J]. Science Technology and Engineering,2012,12(24): 6107-6112. (in Chinese

    ZHOU Chao, PENG Weidong, HE Jian, et al. Influence of apertures in the avionics cabin on electromagnetic shielding effectiveness[J]. Science Technology and Engineering, 2012, 12(24): 6107-6112. (in Chinese)
    [7] 邹望之,郑新前. 航空涡轴发动机发展趋势[J]. 航空动力学报,2019,34(12): 2577-2588. ZOU Wangzhi,ZHENG Xinqian. Development trends of aero turboshaft engines[J]. Journal of Aerospace Power,2019,34(12): 2577-2588. (in Chinese

    ZOU Wangzhi, ZHENG Xinqian. Development trends of aero turboshaft engines[J]. Journal of Aerospace Power, 2019, 34(12): 2577-2588. (in Chinese)
    [8] WALSH K. R,BURCHAM F. W. Flight evaluation of a hydromechanical backup control for the digital electronic engine control system in an F100 engine[C]//Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane. CA United States: NASA,1984: 141-155
    [9] 杜毅洁,郭迎清. 航空发动机的几种备份控制系统[J]. 机械设计与制造,2006(9): 108-109. DU Yijie,GUO Yingqing. Three standby control systems of an aero-engine[J]. Machinery Design & Manufacture,2006(9): 108-109. (in Chinese

    DU Yijie, GUO Yingqing. Three standby control systems of an aero-engine[J]. Machinery Design & Manufacture, 2006(9): 108-109. (in Chinese)
    [10] 薛丹,过玲. 带模拟电备份的FADEC系统的可靠性研究[C]// 中国航空学会第3届航空发动机可靠性学术交流会议论文集. 湖北 宜昌: 中国航空学会,2005: 107-112. XUE Dan,GUO Ling. Reliability study of FADEC system with simulated electric backup[C]// Proceedings of the 3rd Academic Exchange Conference on Aircraft Engine Reliability of the Chinese Aeronautical Society. Yichang Hubei: Chinese Society of Aeronautics and Astronautics,2005: 107-112. (in Chinese

    XUE Dan, GUO Ling. Reliability study of FADEC system with simulated electric backup[C]// Proceedings of the 3rd Academic Exchange Conference on Aircraft Engine Reliability of the Chinese Aeronautical Society. Yichang Hubei: Chinese Society of Aeronautics and Astronautics, 2005: 107-112. (in Chinese)
    [11] 廖光煌,黄金泉. 某型涡轴发动机数控系统的机械液压备份控制方案研究[J]. 航空动力学报,2015,30(11): 2713-2720. LIAO Guanghuang,HUANG Jinquan. Research on backup hydromechanical control plan of the turbo-shaft engine’s control system[J]. Journal of Aerospace Power,2015,30(11): 2713-2720. (in Chinese

    LIAO Guanghuang, HUANG Jinquan. Research on backup hydromechanical control plan of the turbo-shaft engine’s control system[J]. Journal of Aerospace Power, 2015, 30(11): 2713-2720. (in Chinese)
    [12] 姚华,王国祥. 航空发动机全权限数控系统研究和试飞验证[J]. 航空动力学报,2004,19(2): 247-253. YAO Hua,WANG Guoxiang. A study and flight evaluation of full authority digital engine control system[J]. Journal of Aerospace Power,2004,19(2): 247-253. (in Chinese

    YAO Hua, WANG Guoxiang. A study and flight evaluation of full authority digital engine control system[J]. Journal of Aerospace Power, 2004, 19(2): 247-253. (in Chinese)
    [13] 樊思齐,徐芸华. 航空推进系统控制[M]. 西安: 西北工业大学出版社,1995. FAN Siqi,XU Yunhua. Aviation propulsion system control[M]. Xi’an: Northwestern Polytechnical University Press,1995. (in Chinese

    FAN Siqi, XU Yunhua. Aviation propulsion system control[M]. Xi’an: Northwestern Polytechnical University Press, 1995. (in Chinese)
    [14] 顾民. 航空动力装置控制[M]. 北京: 国防工业出版社,1984. GU Min. Aviation power plant control[M]. Beijing: National Defense Industry Press,1984. (in Chinese
    [15] 田飞龙,郭迎清,李睿超,等. 某涡扇发动机分布式控制系统设计与总线性能[J]. 航空动力学报,2015,30(9): 2278-2285. TIAN Feilong,GUO Yingqing,LI Ruichao,et al. Design of distributed control system and investigation on bus communication performance of a turbofan engine[J]. Journal of Aerospace Power,2015,30(9): 2278-2285. (in Chinese

    TIAN Feilong, GUO Yingqing, LI Ruichao, et al. Design of distributed control system and investigation on bus communication performance of a turbofan engine[J]. Journal of Aerospace Power, 2015, 30(9): 2278-2285. (in Chinese)
    [16] 孙丰华,马永轻. 发动机控制系统试验器仿真测试控制系统设计[C]//航空试验测试技术学术交流会论文集. 福建 厦门: 航空工业测控技术发展中心,2014: 122-124. SUN Fenghua,MA Yongqing. Design of simulation test control system for engine control system tester[C]//Collected Papers of the Academic Exchange Conference on Aviation Test and Testing Technology. Xiamen Fujian: Aviation Industry Testing and Development Center,2014: 122-124. (in Chinese

    SUN Fenghua, MA Yongqing. Design of simulation test control system for engine control system tester[C]//Collected Papers of the Academic Exchange Conference on Aviation Test and Testing Technology. Xiamen Fujian: Aviation Industry Testing and Development Center, 2014: 122-124. (in Chinese)
    [17] 潘丽君,孙志岩,杨惠民,等. 航空发动机控制系统半物理模拟试验的应用[J]. 航空发动机,2017,43(3): 62-67. PAN Lijun,SUN Zhiyan,YANG Huimin,et al. Survey of closed-loop bench testing of aero engine control system[J]. Aeroengine,2017,43(3): 62-67. (in Chinese

    PAN Lijun, SUN Zhiyan, YANG Huimin, et al. Survey of closed-loop bench testing of aero engine control system[J]. Aeroengine, 2017, 43(3): 62-67. (in Chinese)
    [18] 段翀,谢寿生,蔡开龙. 某型涡扇发动机半实物仿真控制系统[J]. 推进技术,2005,26(5): 434-438. DUAN Chong,XIE Shousheng,CAI Kailong. Hardware-in-the-loop simulation of a turbofan aeroengine control system[J]. Journal of Propulsion Technology,2005,26(5): 434-438. (in Chinese

    DUAN Chong, XIE Shousheng, CAI Kailong. Hardware-in-the-loop simulation of a turbofan aeroengine control system[J]. Journal of Propulsion Technology, 2005, 26(5): 434-438. (in Chinese)
    [19] 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术,2018,39(5): 961-970. CAO Jianguo. Status,challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology,2018,39(5): 961-970. (in Chinese

    CAO Jianguo. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of Propulsion Technology, 2018, 39(5): 961-970. (in Chinese)
    [20] 刘大响,程荣辉. 世界航空动力技术的现状及发展动向[J]. 北京航空航天大学学报,2002,28(5): 490-496. LIU Daxiang,CHENG Ronghui. Current status and development direction of aircraft power technology in the world[J]. Journal of Beijing University of Aeronautics and Astronautics,2002,28(5): 490-496. (in Chinese

    LIU Daxiang, CHENG Ronghui. Current status and development direction of aircraft power technology in the world[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(5): 490-496. (in Chinese)
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  34
  • HTML浏览量:  30
  • PDF量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 网络出版日期:  2023-12-29

目录

    /

    返回文章
    返回