留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲烷预冷器三维换热特性数值研究

罗佳茂 游进 焦思 杨顺华 薄泽民 肖云雷

罗佳茂, 游进, 焦思, 等. 甲烷预冷器三维换热特性数值研究[J]. 航空动力学报, 2024, 39(8):20220603 doi: 10.13224/j.cnki.jasp.20220603
引用本文: 罗佳茂, 游进, 焦思, 等. 甲烷预冷器三维换热特性数值研究[J]. 航空动力学报, 2024, 39(8):20220603 doi: 10.13224/j.cnki.jasp.20220603
LUO Jiamao, YOU Jin, JIAO Si, et al. Numerical study on heat exchange performance for three-dimensional methane pre-cooler[J]. Journal of Aerospace Power, 2024, 39(8):20220603 doi: 10.13224/j.cnki.jasp.20220603
Citation: LUO Jiamao, YOU Jin, JIAO Si, et al. Numerical study on heat exchange performance for three-dimensional methane pre-cooler[J]. Journal of Aerospace Power, 2024, 39(8):20220603 doi: 10.13224/j.cnki.jasp.20220603

甲烷预冷器三维换热特性数值研究

doi: 10.13224/j.cnki.jasp.20220603
基金项目: 国家自然科学基金(11902337,52207179)
详细信息
    作者简介:

    罗佳茂(1994-),男,助理研究员,硕士,主要从事组合发动机技术研究。E-mail:luojiamao@cardc.cn

    通讯作者:

    游进(1981-),男,副研究员,博士,主要从事组合发动机技术研究。E-mail:youjin_nudt@163.com

  • 中图分类号: V231.1

Numerical study on heat exchange performance for three-dimensional methane pre-cooler

  • 摘要:

    采用三维数值仿真方法对轴向管束式甲烷预冷器的热交换性能进行了评估,获得了预冷器在不同冷却剂当量比和飞行工况下的流场分布,并在此基础上提出了冷却剂流量控制策略。计算结果表明:该型甲烷预冷器在3倍当量比冷却剂条件下最高能将来流空气冷却131 K,能将传统涡轮发动机工作速域拓展至马赫数为3.0以上;预冷器出口空气流场受管束排列方式影响无法实现完全均匀,总温畸变为13.3%;甲烷最高温升为395 K;冷却管内外壁面平均温差约为15 K,管内甲烷横截面内温差约为10 K;预冷器总压恢复系数为0.715~0.88,换热有效度为0.63~0.9,最大功质比为395 kW/kg。在发动机预冷需求和冷却剂消耗限制条件下规划了冷却剂流量控制策略,建议马赫数为2.5以下保持不高于1.5倍当量比冷却剂,马赫数为3.0以上保持3倍当量比冷却剂。

     

  • 图 1  甲烷预冷膨胀循环ATR发动机原理

    Figure 1.  Schematic of methane pre-cooled expander cycle ATR engine

    图 2  预冷器总体结构

    Figure 2.  Overall structure of the pre-cooler

    图 3  预冷器轴向截面

    Figure 3.  Axial section of the pre-cooler

    图 4  预冷器管束分布

    Figure 4.  Distribution of the pre-cooler tubes

    图 5  预冷器三维计算域

    Figure 5.  Three-dimensional computed field of the pre-cooler

    图 6  预冷器网格划分

    Figure 6.  Grid partition for the pre-cooler

    图 7  不同网格仿真结果对比

    Figure 7.  Comparison of simulation results using different grids

    图 8  不同冷却介质预冷器内总温和压力场分布

    Figure 8.  Temperature and pressure distribution in pre-cooler with different coolants

    图 9  Ma0=3.0、φ=3.0条件下空气总温、总压和速度云图

    Figure 9.  Air contour of total temperature, total pressure and velocity at Ma0=3.0 with φ=3.0

    图 10  预冷器横截面总温云图(Ma0=3.0,φ=3.0)

    Figure 10.  Contour of total temperature at the pre-cooler cross section (Ma0=3.0,φ=3.0)

    图 11  Ma0=3.0、φ=3.0条件下预冷器管束壁内及壁面温度

    Figure 11.  Temperature inside and on wall of pre-cooler tube bundle at Ma0=3.0 with φ=3.0

    图 12  Ma0=3.0、φ=3.0条件下甲烷总温、总压和速度云图

    Figure 12.  Methane contour of total temperature, total pressure and velocity at Ma0=3.0 with φ=3.0

    图 13  Ma0=2.8条件下不同冷却剂当量比的总温云图

    Figure 13.  Contour of total temperature with different equivalent ratio at Ma0=2.8

    图 14  不同当量比下冷却管出口总温云图

    Figure 14.  Contour of total temperature at a tube exit with different equivalent ratio

    图 15  冷却剂当量比φ=3.0下不同来流速度空气总温和速度云图

    Figure 15.  Contour of total temperature and velocity at air outlet at different incoming velocity with φ=3.0

    图 16  空气和甲烷温度变化

    Figure 16.  Variation of total temperature for air and methane

    图 17  不同飞行工况下预冷器内总压恢复系数变化云图

    Figure 17.  Contour of total pressure recovery coefficient with different flight condition

    图 18  预冷器空气总压恢复系数与预入口空气流速分布

    Figure 18.  Distribution of total pressure recovery coefficient of air and the air velocity at pre-cooler entrance

    图 19  预冷器热交换效率

    Figure 19.  Heat exchange efficiency of the pre-cooler

    图 20  预冷器功质比变化

    Figure 20.  Power to weight ratio of the pre-cooler

    图 21  不同飞行速度下冷却剂质量流控制策略

    Figure 21.  Control line of coolant massflow with different flight velocity

    表  1  预冷器仿真计算边界条件

    Table  1.   Boundary conditions for pre-cooler simulation

    边界条件 Ma0=2.0 Ma0=2.5 Ma0=2.8 Ma0=3.0 Ma0=3.1
    空气流量/(kg/s) 0.4641 0.3372 0.3952 0.4556 0.4556
    空气入口静压/kPa 198 213 290 445 445
    空气来流总温/K 388 480 550 601 628
    空气出口背压/kPa 138 180 246 386 386
    冷却剂当量比 1.0/2.0 1.0/2.0/3.0 1.0/2.0/3.0 2.0/3.0 3.0
    冷却剂入口静压/kPa 785/1174 717/1029/1346 803/1211/1610 1404/1 885 1 920
    冷却剂入口总温/K 117 117 117 117 117
    冷却剂出口背压/kPa 500 500 500 500 500
    下载: 导出CSV

    表  2  试验与仿真结果对比

    Table  2.   Comparison of test and simulation results

    冷却剂种类 参数 文献[25]实验数据 仿真结果 相对误差/%
    空气入口温度/K 283 283.8 0.28
    空气出口温度/K 248 247.4 0.24
    空气入口压力/kPa 101.9 103.0 1.08
    空气出口压力/kPa 93.9 93.9 0
    空气入口温度/K 279 279.6 0.2
    空气出口温度/K 188 185.1 1.54
    空气入口压力/kPa 101.8 102.6 0.79
    空气出口压力/kPa 96.4 96.4 0
    下载: 导出CSV
  • [1] WANG Zhenguo,WANG Yuan,ZHANG Jianqiang,et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerospace Science and Technology,2014,39: 31-39. doi: 10.1016/j.ast.2014.08.008
    [2] VARVILL R,BOND A. A comparison of propulsion concepts for SSTO reusable launchers[J]. Journal of the British Interplanetary Society,2003,56: 108.
    [3] OIKE M,KAMIJO K,TANAKA D,et al. LACE for rocket-based combined-cycle: AIAA1999-0091 [R]. Reston,US: AIAA,1999.
    [4] ANDREW C,ADAM W,JASON A,et al. ACES: propulsion technology for next generation space transportation: IAC-03-S. 5.03 [R]. Bremen,Germany: AIAA,2003.
    [5] SATO T,TANATSUGU N,NARUO Y,et al. Development study on ATREX engine[J]. Acta Astronautica,2000,47(11): 799-808. doi: 10.1016/S0094-5765(00)00129-6
    [6] SAWAI S,SATO T,KOBAYASHI H,et al. Flight test plan for ATREX engine development: AIAA-2003-7027 [R]. Norfolk,US: AIAA,2003.
    [7] SATO T,KOBAYASHI H,TANATSUGU N,et al. Development study of the precooler of ATREX engine: AIAA-2003-6985[R]. Norfolk,US: AIAA,1997.
    [8] HARADA K,TANATSUGU N,SATO T. Development study of a precooler for the air-turboramjet expander-cycle engine[J]. Journal of Propulsion and Power,2001,17(6): 1233-1238. doi: 10.2514/2.5869
    [9] FUKIBA K,INOUE S,OHKUBO H,et al. New defrosting method using jet impingement for precooled turbojet engines[J]. Journal of Thermophysics and Heat Transfer,2009,23(3): 533-542. doi: 10.2514/1.40491
    [10] 张蒙正,李平,陈祖奎. 组合循环动力系统面临的挑战及前景[J]. 火箭推进,2009,35(1): 1-8,15. ZHANG Mengzheng,LI Ping,CHEN Zukui. Challenge and perspective of combined cycle propulsion system[J]. Journal of Rocket Propulsion,2009,35(1): 1-8,15. (in Chinese doi: 10.3969/j.issn.1672-9374.2009.01.001

    ZHANG Mengzheng, LI Ping, CHEN Zukui. Challenge and perspective of combined cycle propulsion system[J]. Journal of Rocket Propulsion, 2009, 35(1): 1-8, 15. (in Chinese) doi: 10.3969/j.issn.1672-9374.2009.01.001
    [11] LONGSTAFF R,BOND A. The SKYLON project: AIAA-2011-2244 [R]. San Francisco,USA: AIAA,2011
    [12] VARVILL R,BOND A. The Skylon spaceplane: progress to realization[J]. Journal of the British Interplanetary Society,2008,61: 412-418.
    [13] European Space Agency. Skylon assessment report [R]. Paris,France: European Space Agency,2011.
    [14] MURRAY J J,GUHA A,BOND A. Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers[J]. Acta Astronautica,1997,41(11): 723-729. doi: 10.1016/S0094-5765(97)00199-9
    [15] MURRAY J,HEMPSELL C,BOND A. An experimental precooler for airbreathing rocket engines[J]. Journal of the British Interplanetary Society,2001,54: 199-209.
    [16] WEBBER H,FEAST S,BOND A. Heat exchanger design in combined cycle engines[J]. Journal of the British Interplanetary,2008,54: 1-6.
    [17] VARVILL R. Heat exchanger development at Reaction Engines Ltd.[J]. Acta Astronautica,2010,66(9/10): 1468-1474.
    [18] WEBBER H,TAYLOR N. Tunnel development for heat transfer analysis in compact heat exchangers: AIAA-2010-4537[R]. Chicago,USA: AIAA,2010.
    [19] 高远,陈玉春,史新兴. SABRE预冷器计算模型及其在整机模型中的应用[J]. 推进技术,2021,42(11): 2485-2493. GAO Yuan,CHEN Yuchun,SHI Xinxing. SABRE precooler calculation model and its application in engine model[J]. Journal of Propulsion Technology,2021,42(11): 2485-2493. (in Chinese

    GAO Yuan, CHEN Yuchun, SHI Xinxing. SABRE precooler calculation model and its application in engine model[J]. Journal of Propulsion Technology, 2021, 42(11): 2485-2493. (in Chinese)
    [20] 李帅,马同玲,刘洪涛,等. SABRE预冷器结构参数对其性能影响的数值分析[J]. 推进技术,2022,43(4): 257-264. LI Shuai,MA Tongling,LIU Hongtao,et al. Numerical analysis of effects of pre-cooler structure parameter on its performance in SABRE[J]. Journal of Propulsion Technology,2022,43(4): 257-264. (in Chinese

    LI Shuai, MA Tongling, LIU Hongtao, et al. Numerical analysis of effects of pre-cooler structure parameter on its performance in SABRE[J]. Journal of Propulsion Technology, 2022, 43(4): 257-264. (in Chinese)
    [21] 张小平,李春红,马冬英. 液氧/甲烷发动机动力循环方式研究[J]. 火箭推进,2009,35(4): 14-20,43. ZHANG Xiaoping,LI Chunhong,MA Dongying. Study on the LOX/methane rocket engine power cycles[J]. Journal of Rocket Propulsion,2009,35(4): 14-20,43. (in Chinese doi: 10.3969/j.issn.1672-9374.2009.04.003

    ZHANG Xiaoping, LI Chunhong, MA Dongying. Study on the LOX/methane rocket engine power cycles[J]. Journal of Rocket Propulsion, 2009, 35(4): 14-20, 43. (in Chinese) doi: 10.3969/j.issn.1672-9374.2009.04.003
    [22] 王成刚,孙宝坤,林纬,等. 超临界压力下低温甲烷在螺旋管内传热数值研究[J]. 低温与超导,2018,46(2): 1-5,14. WANG Chenggang,SUN Baokun,LIN Wei,et al. Heat transfer study of methane in a helical coiled tube at supercritical pressure[J]. Cryogenics & Superconductivity,2018,46(2): 1-5,14. (in Chinese

    WANG Chenggang, SUN Baokun, LIN Wei, et al. Heat transfer study of methane in a helical coiled tube at supercritical pressure[J]. Cryogenics & Superconductivity, 2018, 46(2): 1-5, 14. (in Chinese)
    [23] 张楚薇. 液氧甲烷发动机燃烧及耦合传热计算研究[D]. 北京: 中国航天科技集团公司第一研究院,2017. ZHANG Chuwei. Study on the coupled calculation of combustion and heat transfer in LOX/methane rocket engine[D]. Beijing: China Aerospace Science and Technology Corporation,2017. (in Chinese

    ZHANG Chuwei. Study on the coupled calculation of combustion and heat transfer in LOX/methane rocket engine[D]. Beijing: China Aerospace Science and Technology Corporation, 2017. (in Chinese)
    [24] 尹亮,刘伟强. 液氧/甲烷发动机研究进展与技术展望[J]. 航空兵器,2018,25(4): 21-27. YIN Liang,LIU Weiqiang. Review and prospect of LOX/methane rocket engine systems[J]. Aero Weaponry,2018,25(4): 21-27. (in Chinese

    YIN Liang, LIU Weiqiang. Review and prospect of LOX/methane rocket engine systems[J]. Aero Weaponry, 2018, 25(4): 21-27. (in Chinese)
    [25] TANATSUGU N,SATO T,BALEPIN V,et al. Development study on ATREX engine: AIAA-96-4553 [R]. Norfolk,USA: AIAA,2003.
    [26] HARADA K,TANATSUGU N,SATO T. Development study on pre-cooler for ATREX engine: AIAA-99-4897 [R]. Norfolk,USA: AIAA,1999.
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  30
  • HTML浏览量:  15
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 网络出版日期:  2024-01-09

目录

    /

    返回文章
    返回