留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

榫连接结构微动疲劳模拟件设计及试验

鄢林 胡殿印 田腾跃 毛建兴 王荣桥

鄢林, 胡殿印, 田腾跃, 等. 榫连接结构微动疲劳模拟件设计及试验[J]. 航空动力学报, 2024, 39(9):20220606 doi: 10.13224/j.cnki.jasp.20220606
引用本文: 鄢林, 胡殿印, 田腾跃, 等. 榫连接结构微动疲劳模拟件设计及试验[J]. 航空动力学报, 2024, 39(9):20220606 doi: 10.13224/j.cnki.jasp.20220606
YAN Lin, HU Dianyin, TIAN Tengyue, et al. Design and experiment of simulated specimen for fretting fatigue of turbine attachment[J]. Journal of Aerospace Power, 2024, 39(9):20220606 doi: 10.13224/j.cnki.jasp.20220606
Citation: YAN Lin, HU Dianyin, TIAN Tengyue, et al. Design and experiment of simulated specimen for fretting fatigue of turbine attachment[J]. Journal of Aerospace Power, 2024, 39(9):20220606 doi: 10.13224/j.cnki.jasp.20220606

榫连接结构微动疲劳模拟件设计及试验

doi: 10.13224/j.cnki.jasp.20220606
基金项目: 国家自然科学基金(52022007); 国家科技重大专项(2017-Ⅳ-0004-0041,J2019-Ⅳ-0009-0077,J2019-Ⅳ0016-0084)
详细信息
    作者简介:

    鄢林(1996-),男,博士生,主要从事微动疲劳方面的研究。E-mail:dlyanlin@buaa.edu.cn

    通讯作者:

    王荣桥(1968-),男,教授、博士生导师,博士,主要从事发动机结构强度可靠性、多学科优化设计等研究。E-mail:wangrq@buaa.edu

  • 中图分类号: V231.95

Design and experiment of simulated specimen for fretting fatigue of turbine attachment

  • 摘要:

    提出了基于损伤控制参量一致的榫连接结构微动疲劳模拟件设计方法。在几何相似的基础上,保证最大相对滑移距离与临界距离内等效应力分布的一致性,确定模拟件的二维结构尺寸;在此基础上,以临界裂纹长度内应力强度因子一致为目标,优化分析确定模拟件的三维结构尺寸;开展了某型发动机涡轮榫连接结构模拟件的微动疲劳试验,试验观测到裂纹萌生于接触面边缘,裂纹初期扩展方向垂直于接触面,断裂时的裂纹长度与仿真结果相比误差小于5%,由此验证模拟件设计方法的合理性。

     

  • 图 1  涡轮叶盘结构有限元模型

    Figure 1.  Finite element model of the turbine disc and blade

    图 2  涡轮榫连接结构有限元分析结果

    Figure 2.  Finite element analysis results for turbine attachment

    图 3  榫连接结构模拟件的关键尺寸

    Figure 3.  Critical dimensions for simulated specimen

    图 4  榫槽宽度对相对滑移距离的影响规律

    Figure 4.  Effect of groove width on relative slip distance

    图 5  榫连接结构模拟件初始几何构型

    Figure 5.  Initial geometrical configuration of the simulated specimen

    图 6  损伤参数对设计变量的灵敏度分析结果

    Figure 6.  Results of sensitivity analysis of damage parameters to design variables

    图 7  模拟件和真实结构von Mises应力分布的对比

    Figure 7.  Comparison of von Mises stress distribution with the simulated specimen and turbine attachment

    图 8  模拟件裂纹扩展分析

    Figure 8.  Crack growth analysis of the simulated specimen

    图 9  榫连接结构微动疲劳模拟件(单位:mm)

    Figure 9.  Simulated specimen for fretting fatigue of turbine attachment (unit:mm)

    图 10  榫连接结构模拟件试验结果

    Figure 10.  Test results of the simulated specimen of turbine attachment

    表  1  涡轮盘及叶片材料力学性能

    Table  1.   Material properties of the turbine disc and blade

    材料 温度/℃ 弹性模量/GPa 切变模量/GPa 泊松比 线膨胀系数/10−6−1
    GH4720Li 400 201 0.36 11.94
    GH4720Li 600 190 0.37 12.55
    DD6 650 107.5 100 0.37 13.34
    DD6 980 80.5 74.2 0.38 14.88
    下载: 导出CSV

    表  2  榫连接结构模拟件榫头部分的试验结果

    Table  2.   Test results for the tenon part of the simulated specimen

    编号 温度/℃ 最大载荷/kN 载荷比 寿命(循环次数)/104
    T1 600 12.98 0.1 8.89
    T2 600 12.98 0.1 8.59
    T3 600 12.98 0.1 6.80
    T4 600 12.98 0.1 8.17
    T5 600 12.98 0.1 11.90
    T6 600 12.98 0.1 7.68
    T7 600 12.98 0.1 8.16
    T8 600 12.98 0.1 6.38
    T9 600 12.98 0.1 14.69
    下载: 导出CSV

    表  3  榫连接结构模拟件榫槽部分的试验结果

    Table  3.   Test results for the groove part of the simulated specimen

    编号 温度/℃ 最大载荷/kN 载荷比 寿命(循环次数)/104
    C1 600 12.98 0.1 27.49
    C2 600 12.98 0.1 25.72
    C6 600 12.98 0.1 29.49
    下载: 导出CSV
  • [1] 周仲荣,LEO V. 微动磨损[M]. 北京: 科学出版社,2002. ZHOU Zhongrong,LEO V. Fretting wear[M]. Beijing: Science Press,2002. (in Chinese

    ZHOU Zhongrong, LEO V. Fretting wear[M]. Beijing: Science Press, 2002. (in Chinese)
    [2] 何明鉴. 机械构件的微动疲劳[M]. 北京: 国防工业出版社,1994. HE Mingjian. Fretting fatigue of mechanical components [M]. Beijing: National Defence Industry Press,1994. (in Chinese

    HE Mingjian. Fretting fatigue of mechanical components [M]. Beijing: National Defence Industry Press, 1994. (in Chinese)
    [3] WATERHOUSE R B. Fretting fatigue[J]. Materials Science and Engineering,1976,25: 201-206. doi: 10.1016/0025-5416(76)90071-9
    [4] 黄致建,朱如鹏,潘升材. 单向加载疲劳机上燕尾形榫联接微动损伤试验件设计[J]. 航空学报,1994,15(8): 1015-1023. HUANG Zhijian,ZHU Rupeng,PAN Shengcai. The designing of the specimen of dovetail joint in unidirectionally-loaded fatigue test rig[J]. Acta Aeronautica et Astronautica Sinica,1994,15(8): 1015-1023. (in Chinese

    HUANG Zhijian, ZHU Rupeng, PAN Shengcai. The designing of the specimen of dovetail joint in unidirectionally-loaded fatigue test rig[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15(8): 1015-1023. (in Chinese)
    [5] 由美雁,何雪浤,谢里阳. 发动机轮盘模拟技术理论与方法[J]. 机械设计,2007,24(2): 62-64. YOU Meiyan,HE Xuehong,XIE Liyang. Research on simulative technical theory and methodology of turbine rotor[J]. Journal of Machine Design,2007,24(2): 62-64. (in Chinese

    YOU Meiyan, HE Xuehong, XIE Liyang. Research on simulative technical theory and methodology of turbine rotor[J]. Journal of Machine Design, 2007, 24(2): 62-64. (in Chinese)
    [6] 赵福星,杨兴宇. 发动机构件低循环疲劳模拟试验件设计方法[J]. 燃气涡轮试验与研究,2003,16(2): 50-52. ZHAO Fuxing,YANG Xingyu. A design method of simulation samples for aero-engine components used in low cycle fatigue test[J]. Gas Turbine Experiment and Research,2003,16(2): 50-52. (in Chinese

    ZHAO Fuxing, YANG Xingyu. A design method of simulation samples for aero-engine components used in low cycle fatigue test[J]. Gas Turbine Experiment and Research, 2003, 16(2): 50-52. (in Chinese)
    [7] 刘廷毅,耿瑞,张峻峰. 发动机轮盘低循环疲劳寿命试验模拟件设计[J]. 航空动力学报,2008,23(1): 32-36. LIU Tingyi,GENG Rui,ZHANG Junfeng. Design of simulated specimen for low-cycle fatigue of turbine engine disk[J]. Journal of Aerospace Power,2008,23(1): 32-36. (in Chinese

    LIU Tingyi, GENG Rui, ZHANG Junfeng. Design of simulated specimen for low-cycle fatigue of turbine engine disk[J]. Journal of Aerospace Power, 2008, 23(1): 32-36. (in Chinese)
    [8] 陆山,王春光,陈军. 任意最大应力梯度路径轮盘模拟件设计方法[J]. 航空动力学报,2010,25(9): 2000-2005. LU Shan,WANG Chunguang,CHEN Jun. Design method of imitation specimen for engine disk with any maximum stress gradient path[J]. Journal of Aerospace Power,2010,25(9): 2000-2005. (in Chinese

    LU Shan, WANG Chunguang, CHEN Jun. Design method of imitation specimen for engine disk with any maximum stress gradient path[J]. Journal of Aerospace Power, 2010, 25(9): 2000-2005. (in Chinese)
    [9] 杨兴宇,董立伟,耿中行,等. 某压气机轮盘榫槽低循环疲劳模拟件设计与试验[J]. 航空动力学报,2008,23(10): 1829-1834. YANG Xingyu,DONG Liwei,GENG Zhongxing,et al. Design and experimentation of simulation specimen for aero-engine compressor disk slot used in low cycle fatigue test[J]. Journal of Aerospace Power,2008,23(10): 1829-1834. (in Chinese

    YANG Xingyu, DONG Liwei, GENG Zhongxing, et al. Design and experimentation of simulation specimen for aero-engine compressor disk slot used in low cycle fatigue test[J]. Journal of Aerospace Power, 2008, 23(10): 1829-1834. (in Chinese)
    [10] 郑小梅,孙燕涛,杨兴宇,等. 某涡扇发动机高压涡轮盘螺栓孔低循环疲劳模拟件设计[J]. 航空动力学报,2018,33(10): 2351-2358. ZHENG Xiaomei,SUN Yantao,YANG Xingyu,et al. Design of low cycle fatigue simulating specimen for bolt holes of a turbofan engine high pressure turbine disc[J]. Journal of Aerospace Power,2018,33(10): 2351-2358. (in Chinese

    ZHENG Xiaomei, SUN Yantao, YANG Xingyu, et al. Design of low cycle fatigue simulating specimen for bolt holes of a turbofan engine high pressure turbine disc[J]. Journal of Aerospace Power, 2018, 33(10): 2351-2358. (in Chinese)
    [11] 况成玉,刘奕斐. 某型航空发动机钛合金轮盘模拟疲劳试验件设计[J]. 装备制造技术,2020(1): 36-40. KUANG Chengyu,LIU Yifei. Design of simulated specimen for low-cycle fatigue of aircraft engine titanium alloy disk[J]. Equipment Manufacturing Technology,2020(1): 36-40. (in Chinese

    KUANG Chengyu, LIU Yifei. Design of simulated specimen for low-cycle fatigue of aircraft engine titanium alloy disk[J]. Equipment Manufacturing Technology, 2020(1): 36-40. (in Chinese)
    [12] 魏大盛,冯俊淇,马梦弟,等. 航空发动机轮盘中心孔模拟试验件设计方法及试验验证[J]. 航空动力学报,2022,37(10): 2157-2166. WEI Dasheng,FENG Junqi,MA Mengdi,et al. Design method and test verification of simulated specimen of aeroengine disc center hole[J]. Journal of Aerospace Power,2022,37(10): 2157-2166. (in Chinese

    WEI Dasheng, FENG Junqi, MA Mengdi, et al. Design method and test verification of simulated specimen of aeroengine disc center hole[J]. Journal of Aerospace Power, 2022, 37(10): 2157-2166. (in Chinese)
    [13] RAJASEKARAN R,NOWELL D. Fretting fatigue in dovetail blade roots: experiment and analysis[J]. Tribology International,2006,39(10): 1277-1285. doi: 10.1016/j.triboint.2006.02.044
    [14] CONNER B P,NICHOLAS T. Using a dovetail fixture to study fretting fatigue and fretting palliatives[J]. Journal of Engineering Materials and Technology,2006,128(2): 133-141. doi: 10.1115/1.2172272
    [15] 古远兴. 高低周复合载荷下燕尾榫结构微动疲劳寿命研究[D]. 南京: 南京航空航天大学,2007. GU Yuanxing. Research on fretting fatigue life of dovetail joint under HCF-LCF load[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2007. (in Chinese

    GU Yuanxing. Research on fretting fatigue life of dovetail joint under HCF-LCF load[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese)
    [16] GOLDEN P J. Development of a dovetail fretting fatigue fixture for turbine engine materials[J]. International Journal of Fatigue,2009,31(4): 620-628. doi: 10.1016/j.ijfatigue.2008.03.017
    [17] SUN Shouyi,LI Lei,YUE Zhufeng,et al. Fretting fatigue failure behavior of nickel-based single crystal superalloy dovetail specimen in contact with powder metallurgy pads at high temperature[J]. Tribology International,2020,142: 105986. doi: 10.1016/j.triboint.2019.105986
    [18] QU Zhen,LIU Kaicheng,WANG Baizhi,et al. Fretting fatigue experiment and finite element analysis for dovetail specimen at high temperature[J]. Applied Sciences,2021,11(21): 9913. doi: 10.3390/app11219913
    [19] RUIZ C,BODDINGTON P H B,CHEN K C. An investigation of fatigue and fretting in a dovetail joint[J]. Experimental Mechanics,1984,24(3): 208-217. doi: 10.1007/BF02323167
    [20] SUSMEL L,TAYLOR D. The theory of critical distances to estimate lifetime of notched components subjected to variable amplitude uniaxial fatigue loading[J]. International Journal of Fatigue,2011,33(7): 900-911. doi: 10.1016/j.ijfatigue.2011.01.012
    [21] HU Chen,WEI Dasheng,WANG Yanrong,et al. Experimental and numerical study of fretting fatigue in dovetail assembly using a total life prediction model[J]. Engineering Fracture Mechanics,2019,205: 301-318. doi: 10.1016/j.engfracmech.2018.08.001
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  44
  • HTML浏览量:  20
  • PDF量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-21
  • 网络出版日期:  2024-01-02

目录

    /

    返回文章
    返回