留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时变来流条件下横向射流燃油破碎和雾化特性数值研究

张权 刘玉英 刘坤霖 高昭 谢奕

张权, 刘玉英, 刘坤霖, 等. 时变来流条件下横向射流燃油破碎和雾化特性数值研究[J]. 航空动力学报, 2024, 39(8):20220608 doi: 10.13224/j.cnki.jasp.20220608
引用本文: 张权, 刘玉英, 刘坤霖, 等. 时变来流条件下横向射流燃油破碎和雾化特性数值研究[J]. 航空动力学报, 2024, 39(8):20220608 doi: 10.13224/j.cnki.jasp.20220608
ZHANG Quan, LIU Yuying, LIU Kunlin, et al. Numerical study on the breakup and atomization characteristics of crossflow under time-varying flow conditions[J]. Journal of Aerospace Power, 2024, 39(8):20220608 doi: 10.13224/j.cnki.jasp.20220608
Citation: ZHANG Quan, LIU Yuying, LIU Kunlin, et al. Numerical study on the breakup and atomization characteristics of crossflow under time-varying flow conditions[J]. Journal of Aerospace Power, 2024, 39(8):20220608 doi: 10.13224/j.cnki.jasp.20220608

时变来流条件下横向射流燃油破碎和雾化特性数值研究

doi: 10.13224/j.cnki.jasp.20220608
基金项目: 国家科技重大专项(2017-Ⅲ-0008-0034)
详细信息
    作者简介:

    张权(1996-),男,博士生,主要从事航空发动机雾化研究。E-mail:19800363193@163.com

    通讯作者:

    刘玉英(1974-),女,教授,博士,主要从事发动机燃烧研究。E-mail:yyliu@buaa.edu.cn

  • 中图分类号: V231.23

Numerical study on the breakup and atomization characteristics of crossflow under time-varying flow conditions

  • 摘要:

    针对涡轮基组合循环发动机加力/冲压燃烧室模态转化过程中进口气流随时间剧烈变化的问题,以横向射流为研究对象,在来流温度300~800 K、来流速度100~164 m/s和来流加速度20~100 m/s2条件下,采用雷诺平均/离散相模型相结合的方法探讨了来流加速度对横向射流外轨迹以及索太尔平均直径(SMD)分布的影响,采用大涡模拟/流体体积法相结合的方法探讨了来流加速度对横向射流燃油雾化过程的影响。结果表明:来流加速度对横向射流外轨迹和下游SMD分布几乎没有影响;来流加速度可能引起射流液柱破碎点延后、反向对转涡沿喷射方向分布变宽且沿展向在边缘处强度减弱,但影响并不显著;时变来流对于燃油破碎及雾化特性无明显影响。

     

  • 图 1  计算区域示意图

    Figure 1.  Diagram of calculated area

    图 2  网格无关性验证

    Figure 2.  Verification of mesh independence

    图 3  常温下计算的射流轨迹对比图(T=300 K)

    Figure 3.  Comparison diagram of jet trajectory calculated at room temperature (T=300 K)

    图 4  加速度大小对射流轨迹的影响

    Figure 4.  Effect of acceleration size on jet trajectory

    图 5  不同加速度时液雾SMD分布直方图(Case A)

    Figure 5.  Histogram of spray SMD at different accelerations (Case A)

    图 6  加速度大小对SMD的影响

    Figure 6.  Effect of acceleration on SMD

    图 7  燃油等值面图(y-z向, φISO=10%)

    Figure 7.  Image of fuel iso-surface (y-z direction , φISO=10%)

    图 8  燃油等值面图(x-z向, φISO=10%)

    Figure 8.  Image of fuel iso-surface (x-z direction, φISO=10%)

    图 9  沿喷射方向的液柱变形情况分析(x-y向)

    Figure 9.  Analysis of deformation of liquid column with different sections (x-y direction)

    图 10  x-z平面涡量切片图

    Figure 10.  Vortex volume of the x-z plane

    图 11  y=4 mm截面上a=0 m/s2a=100 m/s2工况下的涡量图

    Figure 11.  Vorticity graphs of a=0 m/s2 and a=100 m/s2 on the section y=4 mm

    表  1  模拟工况表

    Table  1.   Simulation case table

    工况 来流温度T/K 来流加速度a/(m/s2 目标来流速度Vair,t/(m/s) 燃油速度Uj/(m/s) 目标液气动量比qt
    Case A0~A3 300 0,20,50,100 100 20 27
    Case B0~B3 500 0,20,50,100 128.77 20 27
    Case C0~C3 700 0,20,50,100 153.45 20 27
    Case D0~D3 800 0,20,50,100 163.58 20 27
    Case E0 300 0 120 20 18
    Case F0 300 0 140 20 14
    下载: 导出CSV
  • [1] 陈敏,贾梓豪. 涡轮基组合循环动力关键技术进展[J]. 科技导报,2020,38(12): 69-84. CHENG Min,JIA Xinhao. Progress and prospect of key technologies for turbine based combined cycle engine[J]. Science & Technology Review,2020,38(12): 69-84. (in Chinese doi: 10.3981/j.issn.1000-7857.2020.12.006

    CHENG Min, JIA Xinhao. Progress and prospect of key technologies for turbine based combined cycle engine[J]. Science & Technology Review, 2020, 38(12): 69-84. (in Chinese) doi: 10.3981/j.issn.1000-7857.2020.12.006
    [2] 金捷,陈敏,刘玉英. 涡轮基组合循环发动机[M]. 北京: 国防工业出版社,2019: 36-42. JIN Jie,CHEN Ming,LIU Yuying,et al. Turbine-based combined cycle engine[M]. Beijing: National Defense Industry Press,2019: 36-42 (in Chinese

    JIN Jie, CHEN Ming, LIU Yuying, et al. Turbine-based combined cycle engine[M]. Beijing: National Defense Industry Press, 2019: 36-42 (in Chinese)
    [3] KUMAR A,DRUMMOND J P,MCCLINTON C R,et al. Research in hypersonic airbreathing propulsion at the NASA Lang-ley Research Center: ISABE-2001 Invited Lecture 4 [R]. Hampton,US: NASA Langley Research Center,2001.
    [4] BRADLEY M,BOWCUTT K,MCCOMB J,et al. Revolutionary turbine accelerator (RTA) two-stage-to-orbit (TSTO) vehicle study: AIAA2002-3902 [R]. Reston,US: AIAA,2002.
    [5] 袁化成,章欣涛,童泽润,等. 外并联涡轮基组合循环进气道模态转换技术研究[J]. 航空科学技术,2015,26(11): 37-42. YUAN Huacheng,ZHANG Xintao,TONG Zerun,et al. Research of over/under type TBCC inlet model transition technology[J]. Aeronautical Science and Technology,2015,26(11): 37-42. (in Chinese doi: 10.3969/j.issn.1007-5453.2015.11.006

    YUAN Huacheng, ZHANG Xintao, TONG Zerun, et al. Research of over/under type TBCC inlet model transition technology[J]. Aeronautical Science and Technology, 2015, 26(11): 37-42. (in Chinese) doi: 10.3969/j.issn.1007-5453.2015.11.006
    [6] ALBERTSON C,EMAMI S,TREXLER C. Mach 4 test results of a dual-flowpath,turbine based combined cycle inlet: AIAA2006-8138 [R]. Reston,US: AIAA,2006.
    [7] 宋自航,唐海龙,陈敏. 高超声速并联TBCC总体性能分析与模态转换仿真[J]. 航空发动机,2019,45(1): 33-39. SONG Zihang,TANG Hailong,CHEN Min. Overall performance analysis and modal conversion simulation of hypersonic parallel TBCC[J]. Aeroengine,2019,45(1): 33-39. (in Chinese

    SONG Zihang, TANG Hailong, CHEN Min. Overall performance analysis and modal conversion simulation of hypersonic parallel TBCC[J]. Aeroengine, 2019, 45(1): 33-39. (in Chinese)
    [8] 朱志新,何小民,薛冲,等. 涡轮基组合循环发动机超级燃烧室燃烧性能试验[J]. 航空动力学报,2015,30(9): 2115-2121. ZHU Zhixin,HE Xiaomin,XUE Chong,et al. Experiment on performance of a hyper-combustor utilized in turbine based combined cycle engine[J]. Journal of Aerospace Power,2015,30(9): 2115-2121. (in Chinese

    ZHU Zhixin, HE Xiaomin, XUE Chong, et al. Experiment on performance of a hyper-combustor utilized in turbine based combined cycle engine[J]. Journal of Aerospace Power, 2015, 30(9): 2115-2121. (in Chinese)
    [9] 程晓军. 串联式TBCC超级燃烧室燃烧组织及性能研究[D]. 南京: 南京航空航天大学,2015. CHENG Xiaojun. Investigation of combustion organization and performance of tandem type turbine based combined cycle hyperburner[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2015. (in Chinese

    CHENG Xiaojun. Investigation of combustion organization and performance of tandem type turbine based combined cycle hyperburner[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [10] 林宇震,李林,张弛,等. 液体射流喷入横向气流混合特性研究进展[J]. 航空学报,2014,35(1): 46-57. LIN Yuzhen,LI Lin,ZHANG Chi,et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica,2014,35(1): 46-57. (in Chinese

    LIN Yuzhen, LI Lin, ZHANG Chi, et al. Progress on the mixing of liquid jet injected into a crossflow[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 46-57. (in Chinese)
    [11] 金仁瀚,张铮,刘勇,等. 横向加热气流中直射式喷嘴侧喷雾化特性研究[J]. 推进技术,2013,34(5): 658-663. JIN Renhan,ZHANG Zheng,LIU Yong,et al. Experimental study on atomization characteristics of simple nozzle in heating cross flow[J]. Journal of Propulsion Technology,2013,34(5): 658-663. (in Chinese

    JIN Renhan, ZHANG Zheng, LIU Yong, et al. Experimental study on atomization characteristics of simple nozzle in heating cross flow[J]. Journal of Propulsion Technology, 2013, 34(5): 658-663. (in Chinese)
    [12] 李晨阳,吴里银,李春,等. 超声速气流中凹腔对液体射流穿透深度的影响[J]. 航空动力学报,2018,33(1): 232-238. LI Chenyang,WU Liyin,LI Chun,et al. Effect of cavity on liquid jet penetration in supersonic crossflow[J]. Journal of Aerospace Power,2018,33(1): 232-238. (in Chinese

    LI Chenyang, WU Liyin, LI Chun, et al. Effect of cavity on liquid jet penetration in supersonic crossflow[J]. Journal of Aerospace Power, 2018, 33(1): 232-238. (in Chinese)
    [13] ARIENTI M,MADABHUSHI R K,VAN SLOOTEN P R,et al. Aerodynamic blockage effect on the spray characteristics of a liquid jet atomized by crossflowing air[C]//Proceedings of ASME Turbo Expo 2006: Power for Land,Sea,and Air. Reno,US: ASME,2008: 467-476.
    [14] HOLLOWAY D S,WALTERS D K,LEYLEK J H. Computational study of jet-in-crossflow and film cooling using a new unsteady-based turbulence model[C]//Proceedings of ASME Turbo Expo 2005: Power for Land,Sea,and Air. Reno,US: 2008: 227-237.
    [15] RASHAD M A,RIST U. Numerical investigation of a jet-and-vortex-actuator without and with cross-flow boundary layer[J]. International Journal of Heat and Fluid Flow,2012,33(1): 35-44. doi: 10.1016/j.ijheatfluidflow.2011.10.005
    [16] 张权,刘玉英,谢奕,等. 侧喷式一体化支板火焰稳定器液雾分布试验[J]. 航空动力学报,2023,38(3): 607-617. ZHANG Quan,LIU Yuying,XIE Yi,et al. Experiment on spray distribution of an integrated strut flameholder with cross injection[J]. Journal of Aerospace Power,2023,38(3): 607-617. (in Chinese

    ZHANG Quan, LIU Yuying, XIE Yi, et al. Experiment on spray distribution of an integrated strut flameholder with cross injection[J]. Journal of Aerospace Power, 2023, 38(3): 607-617. (in Chinese)
    [17] WU Peikuan,KIRKENDALL K A,FULLER R P,et al. Breakup processes of liquid jets in subsonic crossflows[J]. Journal of Propulsion and Power,1997,13(1): 64-73. doi: 10.2514/2.5151
    [18] ELSHAMY O M. Experimental investiga-tions of steady and dynamic behavior of transverse liquid jets[D]. Cincinnati,US: University of Cincinnati,2007.
    [19] GOPALA Y,LUBARSKY E,BIBIK O,et al. Experimental Investigation of Spray Dynamics in Cross-flowing air at high Weber number: AIAA2006-4568 [R]. Reston,US: AIAA,2006.
    [20] HAVEN B A,KUROSAKA M. Kidney and anti-kidney vortices in crossflow jets[J]. Journal of Fluid Mechanics,1997,352: 27-64. doi: 10.1017/S0022112097007271
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  113
  • HTML浏览量:  31
  • PDF量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回