留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最大相关雷尼熵与相空间重构的航空发动机复合故障信号特征提取方法

张震 刘保国 周万春 冯伟

张震, 刘保国, 周万春, 等. 基于最大相关雷尼熵与相空间重构的航空发动机复合故障信号特征提取方法[J]. 航空动力学报, 2023, 38(4):889-900 doi: 10.13224/j.cnki.jasp.20220609
引用本文: 张震, 刘保国, 周万春, 等. 基于最大相关雷尼熵与相空间重构的航空发动机复合故障信号特征提取方法[J]. 航空动力学报, 2023, 38(4):889-900 doi: 10.13224/j.cnki.jasp.20220609
ZHANG Zhen, LIU Baoguo, ZHOU Wanchun, et al. Composite fault signal feature extraction method for aero-engine based on maximum correlation Rényi entropy and phase space reconstruction[J]. Journal of Aerospace Power, 2023, 38(4):889-900 doi: 10.13224/j.cnki.jasp.20220609
Citation: ZHANG Zhen, LIU Baoguo, ZHOU Wanchun, et al. Composite fault signal feature extraction method for aero-engine based on maximum correlation Rényi entropy and phase space reconstruction[J]. Journal of Aerospace Power, 2023, 38(4):889-900 doi: 10.13224/j.cnki.jasp.20220609

基于最大相关雷尼熵与相空间重构的航空发动机复合故障信号特征提取方法

doi: 10.13224/j.cnki.jasp.20220609
基金项目: 国家自然科学基金(12072106); 河南省超硬磨料磨削装备重点实验室开放课题(JDKFJJ2022008);郑州工程技术学技术研发推广与转化基金(zjz202209)
详细信息
    作者简介:

    张震(1986-),男,讲师,博士生,主要从事信号处理,故障诊断方面的研究。E-mall:zhangzhen1986217@163.com

    通讯作者:

    刘保国(1962-),男,教授、博士生导师,博士,主要从事转子动力学、机械振动方面的研究。E-mall:bgliu1978@sina.com

  • 中图分类号: V263.6;TH133.33

Composite fault signal feature extraction method for aero-engine based on maximum correlation Rényi entropy and phase space reconstruction

  • 摘要:

    针对低信噪比(SNR),复杂噪声工况下,复合故障信号特征难以提取的问题。提出基于相空间重构融入最大相关雷尼熵解卷积的信号特征提取方法,该方法以雷尼熵为敏感特征范数,以最大相关雷尼熵解卷积为基本方法,并在其中融入具有噪声抑制特性和分解特性的相空间重构技术。结果表明:雷尼熵与峭度相比,在故障灵敏度相当并略好的情况下,对偶发噪声敏感度仅为峭度的18.4%。通过仿真验证,实验数据验证以及台架实验验证,证明了本文方法与现有的对比方法相比,在提取复合故障信号特征方面具有优势。

     

  • 图 1  $ {S}_{\mathrm{k}} $$ {S}_{\mathrm{r}}、{R}_{\mathrm{e}} $随缺陷变化示意图

    Figure 1.  $ {S}_{\mathrm{k}} $$ {S}_{\mathrm{r}}、{R}_{\mathrm{e}} $ schematic diagram of the variation with defects

    图 2  $ {S}_{\mathrm{k}} $$ {S}_{\mathrm{r}}、{R}_{\mathrm{e}} $对偶发噪声的敏感性

    Figure 2.  $ {S}_{\mathrm{k}} $$ {S}_{\mathrm{r}}、{R}_{\mathrm{e}} $ sensitivity to accidental noise

    图 3  典型信号

    Figure 3.  Typical signal

    图 4  归一化敏感度

    Figure 4.  Normalized sensitivity

    图 5  方法流程图

    Figure 5.  Method flow diagram

    图 6  各分量信号时域波形

    Figure 6.  Time domain waveform of each component signal

    图 7  快速谱峭度分析结果

    Figure 7.  Results of rapid spectral kurtosis analysis

    图 8  MCKD包络谱

    Figure 8.  MCKD envelope spectrum

    图 9  FSR-MCRED分析结果

    Figure 9.  Analysis results of FSR-MCRED

    图 10  发动机结构示意图与齿轮箱结构图

    Figure 10.  Schematic diagram of engine and gearbox structures

    图 11  快速谱峭度分析结果

    Figure 11.  Results of rapid spectral kurtosis analysis

    图 12  FSC分析结果

    Figure 12.  FSC analysis results

    图 13  FSR-MCRED包络谱

    Figure 13.  FSR-MCRED envelope spectra

    图 14  3种方法的包络谱结果

    Figure 14.  Three methods of envelope spectra results

    图 15  实验布局图

    1 电动机;2 联轴器;3 加速度传感器Ⅰ;4 轴承座Ⅰ;5 主轴;6 转子;7 加速度传感器Ⅱ;8 轴承座Ⅱ;9 轴承Ⅰ;10轴承Ⅱ。

    Figure 15.  Diagram of experimental layout

    图 16  4种方法包络分析结果

    Figure 16.  Results of four methods of envelope analysis

    表  1  仿真信号参数

    Table  1.   Simulation signal parameters

    参数数值
    $ {f}_{0}/\mathrm{H}\mathrm{z} $50
    $ {a}_{j} $/g0.7
    M1
    g0.7
    $ {f}_{\mathrm{e}}/\mathrm{H}\mathrm{z} $10
    $ {\tau }_{j} $/s2%T
    下载: 导出CSV

    表  2  仿真信号参数

    Table  2.   Simulation signal parameters

    参数数值及说明
    $ \mathrm{采}\mathrm{样}\mathrm{频}\mathrm{率}{f}_{\mathrm{s}} $/Hz12000
    内圈特征频率$ {f}_{\mathrm{i}} $/Hz213
    外圈特征频率$ {f}_{\mathrm{o}} $/Hz143
    转频$ {f}_{\mathrm{r}} $/Hz2000(转速为12000 r/min)
    比率系数$ \mu $0.3
    冲击干扰振幅${D}_{\mathrm{i} }/{g}$随机变量
    随机冲击时间$ {T}_{3}/\mathrm{s} $随机变量
    离散谐波振幅${p}_{{j} }/{g}$0.03(${p}_{1}/{g}$), 0.04(${p}_{2}/{g}$),
    离散谐波频率${f}_{4{j} }/\mathrm{H}\mathrm{z}$$45.2 ({f}_{41}) ,56.7 ({f}_{42})$
    初始相位${\varphi }_{1}$、$ {\varphi }_{2} $、$ {\varphi }_{3} $、$ {\varphi }_{4} $随机数$\left[-\text{π},\text{π}\right]$
    下载: 导出CSV

    表  3  发动机轴承特征频率

    Table  3.   Characteristic frequency of engine bearings

    参数数值
    转频$ {f}_{\mathrm{r}} $/Hz182.9
    滚动体特征频率$ {f}_{\mathrm{b}} $/Hz650.5
    外圈特征频率${f}_{\mathrm{o} }/{\rm{Hz }}$1419.5
    内圈特征频率$ {f}_{\mathrm{i}} $/Hz1843.5
    保持架$ {\mathrm{特}\mathrm{征}\mathrm{频}\mathrm{率}f}_{\mathrm{t}} $/Hz78.8
    下载: 导出CSV

    表  4  MBER-12K轴承特征频率

    Table  4.   Characteristic frequency of MBER-12K bearings

    参数数值
    转频$ {f}_{\mathrm{r}} $/Hz45
    滚动体特征频率$ {f}_{\mathrm{b}} $/Hz89.6
    外圈特征频率${f}_{\mathrm{o} }/{\rm{Hz}}$137
    内圈特征频率$ {f}_{\mathrm{i}} $/Hz222.7
    保持架$ {\mathrm{特}\mathrm{征}\mathrm{频}\mathrm{率}f}_{\mathrm{t}} $/Hz17.01
    下载: 导出CSV
  • [1] 杨潇谊,邓为权,马军. 基于IRCMNDE和NNCHC的滚动轴承故障诊断[J]. 航空动力学报,2022,37(6): 1150-1161.

    YANG Xiaoyi,DENG Weiquan,MA Jun. Fault diagnosis of rolling bearings based on IRCMNDE and NNCHC[J]. Journal of Aerospace Power,2022,37(6): 1150-1161. (in Chinese)
    [2] ZHANG X,MIAO Q,ZHANF H,et al. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery[J]. Mechanical Systems and Signal Processing,2018,108: 58-72. doi: 10.1016/j.ymssp.2017.11.029
    [3] QIN Y,JIN L,ZHANG A,et al. Rolling bearing fault diagnosis with adaptive harmonic kurtosis and improved bat algorithm[J]. IEEE Transactions on Instrumentation and Measurement,2021,70: 1-12.
    [4] BARSZCZ T,RANDALL R B. Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine[J]. Mechanical Systems and Signal Processing,2009,23: 1352-1365. doi: 10.1016/j.ymssp.2008.07.019
    [5] DONG X,LIAN J,WANG H. Vibration source identification of offshore wind turbine structure based on optimized spectral kurtosis and ensemble empirical mode decomposition[J]. Ocean Engineering,2019,172: 199-212. doi: 10.1016/j.oceaneng.2018.11.030
    [6] WANG T,CHU F,HAN Q,et al. Compound faults detection in gearbox via meshing resonance and spectral kurtosis methods[J]. Journal of Sound and Vibration,2017,392: 367-381. doi: 10.1016/j.jsv.2016.12.041
    [7] SMITH W A,FAN Z,PENG Z,et al. Optimized spectral kurtosis for bearing diagnostics under electromagnetic interference[J]. Mechanical Systems and Signal Processing,2016,75: 371-394. doi: 10.1016/j.ymssp.2015.12.034
    [8] XIANG J,ZHONG Y,GAO H. Rolling element bearing fault detection using PPCA and spectral kurtosis[J]. Measurement,2015,75: 180-191. doi: 10.1016/j.measurement.2015.07.045
    [9] ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing,2007,21: 108-124. doi: 10.1016/j.ymssp.2005.12.002
    [10] LEE J H,KIM D H,SHIN Y H. Hyperbolic localization of incipient tip vortex cavitation in marine propeller using spectral kurtosis[J]. Mechanical Systems and Signal Processing,2018,110: 442-457. doi: 10.1016/j.ymssp.2018.03.026
    [11] WANG Y,MING L. An adaptive SK technique and its application for fault detection of rolling element bearings[J]. Mechanical Systems and Signal Processing,2011,25: 1750-1764. doi: 10.1016/j.ymssp.2010.12.008
    [12] ZHANG K,CHEN P,YANG M,et al. The harmogram: a periodic impulses detection method and its application in bearing fault diagnosis[J]. Mechanical Systems and Signal Processing,2022,165: 108374.1-108374.18.
    [13] ANTONI J. The infogram: entropic evidence of the signature of repetitive transients[J]. Mechanical Systems and Signal Processing,2016,74: 73-94. doi: 10.1016/j.ymssp.2015.04.034
    [14] WIGGINS R A. Minimum entropy deconvolution[J]. Geophysical Prospecting for Petroleum,1980,16(1): 21-35.
    [15] ENDO H,RANDALL R B. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter[J]. Mechanical Systems and Signal Processing,2007,21: 906-919. doi: 10.1016/j.ymssp.2006.02.005
    [16] YANG F,KOU Z,WU J,et al. Application of mutual information-sample entropy based MED-ICEEMDAN De-noising scheme for weak fault diagnosis of hoist bearing[J]. Entropy,2018,20(9): 667-681. doi: 10.3390/e20090667
    [17] CARLOS C. Minimum entropy deconvolution and simplicity: a noniterative algorithm[J]. Geophysics,2012,50(3): 394-413.
    [18] MCDONALD G L,ZHAO Q,ZUO M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing,2012,33: 237-255. doi: 10.1016/j.ymssp.2012.06.010
    [19] MCDONALD G L,ZHAO Q. Multipoint optimal minimum entropy deconvolution and convolution fix: application to vibration fault detection[J]. Mechanical Systems and Signal Processing,2017,82: 461-477. doi: 10.1016/j.ymssp.2016.05.036
    [20] 陈鑫,郭瑜,伍星,等. 基于MCKD和改进IESFOgram相结合的行星轴承外圈故障诊断[J]. 振动与冲击,2021,40(20): 200-206. doi: 10.13465/j.cnki.jvs.2021.20.025

    CHEN Xin,GUO Yu,WU Xing,et al. Planet bearing outer-race fault diagnosis based on MCKD and improved IESFOgram[J]. Journal of Vibration and Shock,2021,40(20): 200-206. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.20.025
    [21] 黄晨光,林建辉,丁建明,等. 一种新的差分奇异值比谱及其在轮对轴承故障诊断中的应用[J]. 振动与冲击,2020,39(4): 17-26. doi: 10.13465/j.cnki.jvs.2020.04.002

    HUANG Chenguang,LIN Jianhui,DING Jianming,et al. A novel energy difference singular value ratio spectrum and its application to wheelset bearing fault diagnosis[J]. Journal of Vibration and Shock,2020,39(4): 17-26. (in Chinese) doi: 10.13465/j.cnki.jvs.2020.04.002
    [22] ZHAO Xuezhi,YE Bangyan. Singular value decomposition packet and its application to extraction of weak fault feature[J]. Mechanical Systems and Signal Processing,2016,70/71: 73-86. doi: 10.1016/j.ymssp.2015.08.033
    [23] RANDALL R B,ANTONI J,CHOBSAARD S. The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals[J]. Mechanical Systems and Signal Processing,2001,15: 945-962. doi: 10.1006/mssp.2001.1415
    [24] TAO B,ZHU L,HAN D,et al. An alternative time-domain index for condition monitoring of rolling element bearings: a comparison study[J]. Reliability Engineering and System Safety,2007,92(5): 660-670. doi: 10.1016/j.ress.2006.03.005
    [25] JERME A,GRIFFATON J,ANDRÉ H,et al. Feedback on the Surveillance 8 challenge: vibration-based diagnosis of a Safran aircraft engine[J]. Mechanical Systems and Signal Processing,2017,97: 112-144. doi: 10.1016/j.ymssp.2017.01.037
    [26] WANG B,LEI Y,LI N,et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability,2018,69: 1-12.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  120
  • HTML浏览量:  72
  • PDF量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 网络出版日期:  2023-03-08

目录

    /

    返回文章
    返回