留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风扇叶片冰撞仿真方法与试验

沈庆阳 何凌川 黎方娟 古远兴 赵朝君

沈庆阳, 何凌川, 黎方娟, 等. 风扇叶片冰撞仿真方法与试验[J]. 航空动力学报, 2022, X(X):20220617 doi: 10.13224/j.cnki.jasp.20220617
引用本文: 沈庆阳, 何凌川, 黎方娟, 等. 风扇叶片冰撞仿真方法与试验[J]. 航空动力学报, 2022, X(X):20220617 doi: 10.13224/j.cnki.jasp.20220617
SHEN Qingyang, HE Lingchuan, LI Fangjuan, et al. Simulation method of hail impacting on fan blades and experiments[J]. Journal of Aerospace Power, 2022, X(X):20220617 doi: 10.13224/j.cnki.jasp.20220617
Citation: SHEN Qingyang, HE Lingchuan, LI Fangjuan, et al. Simulation method of hail impacting on fan blades and experiments[J]. Journal of Aerospace Power, 2022, X(X):20220617 doi: 10.13224/j.cnki.jasp.20220617

风扇叶片冰撞仿真方法与试验

doi: 10.13224/j.cnki.jasp.20220617
详细信息
    作者简介:

    沈庆阳(1987-),男,高级工程师,硕士,主要从事航空发动机强度设计方面的研究。E-mail:shenqy87@163.com

  • 中图分类号: V231.92

Simulation method of hail impacting on fan blades and experiments

  • 摘要:

    采用光滑粒子流体动力学法和拉格朗日法对冰撞过程进行仿真分析,开展了冰雹撞击钢板、撞击钛合金薄板、撞击非旋转态真实风扇叶片的打靶试验验证。结果表明:采用的考虑压缩强度与应变率相关的冰雹本构模型和SPH法能够很好的描述冰雹撞击过程,仿真结果与打靶试验结果吻合良好。基于该本构模型和算法,对某发动机在爬升状态下吞入直径1.1 cm的冰雹情况进行仿真,揭示了叶片不同部位冰撞后的变形情况,发现撞击叶尖部位带来的塑性应变最大。开展整机吞冰试验,试验获得的冰雹撞击部位的叶片变形长度与仿真结果误差小于10%。改进了叶片前缘半径和最大厚度分布,提升了叶片的抗冰撞能力,为风扇叶片抗冰撞改进设计积累了良好的设计经验。

     

  • 图 1  压缩强度应变率相关曲线

    Figure 1.  Strain sensitivity curve of compressive strength

    图 2  试验原理图

    Figure 2.  Schematic diagram of the experiment

    图 3  冰雹撞击钢板试验过程

    Figure 3.  Test process of the hail impacting the plate

    图 4  冰雹撞击钢板数值仿真过程

    Figure 4.  Simulation process of the hail impacting the plate

    图 5  冰雹撞击过程冲击力计算结果

    Figure 5.  Calculated results of the impact force during the hail impacting

    图 6  TC4薄板贴片示意图

    Figure 6.  Strain gauge pasted diagram of the TC4 sheet

    图 7  冰雹撞击TC4薄板瞬间

    Figure 7.  Hail impacting the TC4 sheet moment

    图 8  实测应变与仿真结果对比

    Figure 8.  Comparison between the measured results and the simulation results

    图 9  边界约束条件示意图

    Figure 9.  Boundary constraint conditions diagram

    图 10  应变随薄板厚度变化曲线

    Figure 10.  Curve of the peak strain with the sheet thickness

    图 11  贴片方向应变随Lb变化曲线

    Figure 11.  Curve of the strain in the strain gauge pasted direction with Lb

    图 12  贴片方向应变随La变化曲线

    Figure 12.  Curve of the strain in the strain gauge pasted direction with La

    图 13  B-1试验中冰雹撞击瞬间

    Figure 13.  Hail impacting moment of test B-1

    图 14  B-2试验中冰雹撞击瞬间

    Figure 14.  Hail impacting moment of test B-2

    图 15  B-1试验后叶片变形结果

    Figure 15.  Blade deformation result of test B-1

    图 16  B-2试验后叶片变形情况

    Figure 16.  Blade deformation result of test B-2

    图 17  B-1试验塑性应变仿真结果

    Figure 17.  Plastic strain Simulation result of test B-1

    图 18  B-2试验塑性应变仿真结果

    Figure 18.  Plastic strain Simulation result of test B-2

    图 19  冰雹撞击真实旋转叶片瞬间

    Figure 19.  Moment of the hails impacting the real rotating blades

    图 20  真实旋转叶片冰雹撞击后变形

    Figure 20.  Deformations of the real rotating blades after hails impacted

    图 21  真实旋转叶片冰雹撞击仿真

    Figure 21.  Simulation result of the real rotating blades after hails impacted

    图 22  叶片断裂部位局部放大图

    Figure 22.  Local magnification of the fracture site of the blade

    图 23  叶片几何参数图

    Figure 23.  Blade geometry parameter diagram

    图 24  改进前后参数对比

    Figure 24.  Parameter comparison before and after improvement

    图 25  失效单元比例对比

    Figure 25.  Comparison of failure elements proportion

    图 26  改进设计前后最大塑性应变对比

    Figure 26.  Maximum plastic strain comparison before and after improvement

    表  1  撞击真实静止风扇叶片试验参数

    Table  1.   Parameters of hail-impacting on real stationary fan blade test

    编号冰雹直径d/cm入射速度v/(m/s)撞击部位
    B-12.51174#进气边前缘
    B-25.012510#叶片叶尖
    下载: 导出CSV

    表  2  仿真与试验结果对比

    Table  2.   Comparison of the simulation and the test

    编号 损伤
    形式
    试验变形/mm 仿真变形/mm
    L1 L2 L3 L1 L2 L3
    B-1 凹坑 7 9
    B-2 卷曲 30 38 28 30 40 27
    下载: 导出CSV

    表  3  叶片结构参数改进对比

    Table  3.   Comparison of improved blade structural parameters

    方案 d/mm h/mm L/mm α/(°)
    原始方案 0.28 2 40.2 1.23
    改进方案 0.62 2.2 27 1.68
    下载: 导出CSV
  • [1] 陈光. 航空发动机结构设计分析[M]. 2版. 北京: 北京航空航天大学出版社,2014. CHEN Guang. Structural design analysis of aero-engine[M]. 2nd ed. Beijing: Beijing University of Aeronautics and Astronautics Press,2014. (in Chinese

    CHEN Guang. Structural design analysis of aero-engine[M]. 2nd ed. Beijing: Beijing University of Aeronautics and Astronautics Press, 2014. (in Chinese)
    [2] HORSLEY J. The ‘Rolls-Royce’ way of validating fan integrity: AIAA 93-2602 [R]. Derby,England: AIAA,1993.
    [3] SINGH S,MASIULANIEC K,DEWITT K,et al. Measurements of the impact forces of shed ice striking a surface[C]//Proceedings of the 32nd Aerospace Sciences Meeting and Exhibit. Reston,US: AIAA,1994: 1-23.
    [4] CARNEY K S,BENSON D J,DUBOIS P,et al. A phenomenological high strain rate model with failure for ice[J]. International Journal of Solids and Structures,2006,43(25/26): 7820-7839.
    [5] PEREIRA J M,PADULA S,REVILOCK D,et al. Forces generated by high velocity impact of ice on a rigid structure[R]. Washington DC: National Aeronautics and Space Administration,2006.
    [6] MCNAUGHTON I I,CHISMAN S W. A study of hail impact at high speed on light alloy plates[R]. Trenton,US: Naval Air Warfare Center Aircraft,1940.
    [7] HAYDUK R J,THOMSON R G. An improved analytical treatment of the denting of thin sheets by hail: NASA TN D-6102 [R]. Washington DC: National Aeronautics and Space Administration,1971.
    [8] COMBESCURE A,CHUZEL-MARMOT Y,FABIS J. Experimental study of high-velocity impact and fracture of ice[J]. International Journal of Solids and Structures,2011,48(20): 2779-2790. doi: 10.1016/j.ijsolstr.2011.05.028
    [9] KIM H,KEUNE J N. Compressive strength of ice at impact strain rates[J]. Journal of Materials Science,2007,42(8): 2802-2806. doi: 10.1007/s10853-006-1376-x
    [10] 张丽芬,葛鑫,刘振侠. 人工制备冰雹的力学性能试验研究[J]. 航空学报,2021,42(2): 224255. ZHANG Lifen,GE Xin,LIU Zhenxia. Experimental study on mechanical properties of artificial hail[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 224255. (in Chinese

    ZHANG Lifen, GE Xin, LIU Zhenxia. Experimental study on mechanical properties of artificial hail[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224255. (in Chinese)
    [11] 徐曼,陈勇,王安正. ASTM F320-2010标准冰雹的抗压力学性能实验研究[J]. 科学技术与工程,2016,16(16): 290-294. XU Man,CHEN Yong,WANG Anzheng. Experiment on nonlinear mechanics of artificial hail based on ASTM F320-2010[J]. Science Technology and Engineering,2016,16(16): 290-294. (in Chinese

    XU Man, CHEN Yong, WANG Anzheng. Experiment on nonlinear mechanics of artificial hail based on ASTM F320-2010[J]. Science Technology and Engineering, 2016, 16(16): 290-294. (in Chinese)
    [12] 陈星. 基于ABAQUS的冰雹撞击有限元分析[D]. 呼和浩特: 内蒙古工业大学,2013. CHEN Xing. Finite element analysis for hail impact dependent on ABAOUS[D]. Hohhot: Inner Mongolia University of Technology,2013. (in Chinese

    CHEN Xing. Finite element analysis for hail impact dependent on ABAOUS[D]. Hohhot: Inner Mongolia University of Technology, 2013. (in Chinese)
    [13] 李静. 基于LS-DYNA的冰雹冲击铝合金平板数值模拟[D]. 南京: 东南大学,2015. LI Jing. Numerical simulation of hail impact on aluminum alloy plate based on LS-DYNA[D]. Nanjing: Southeast University,2015. (in Chinese

    LI Jing. Numerical simulation of hail impact on aluminum alloy plate based on LS-DYNA[D]. Nanjing: Southeast University, 2015. (in Chinese)
    [14] 张海洋,杜少辉,任磊. 航空发动机风扇叶片冰雹撞击仿真[J]. 航空发动机,2021,47(1): 42-46. ZHANG Haiyang,DU Shaohui,REN Lei. Simulation study on hail impact of aeroengine fan blade[J]. Aeroengine,2021,47(1): 42-46. (in Chinese

    ZHANG Haiyang, DU Shaohui, REN Lei. Simulation study on hail impact of aeroengine fan blade[J]. Aeroengine, 2021, 47(1): 42-46. (in Chinese)
    [15] JOHNSON G R,COOK W. A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[C]// Proceedings of the 7th International symposium on Ballistics. Hague,Holland: International Ballistics Committee,1983: 541-547.
    [16] 胡绪腾. 外物损伤及其对钛合金叶片高循环疲劳寿命强度的影响[D]. 南京: 南京航空航天大学,2009. HU Xuteng. Foreign object damage and its effect on high cycle fatigue strength of titanium alloy engine blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009. (in Chinese

    HU Xuteng. Foreign object damage and its effect on high cycle fatigue strength of titanium alloy engine blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [17] 季玉辉. 基于Johnson-Cook模型的硬物损伤数值模拟研究[D]. 南京: 南京航空航天大学,2009. JI Yuhui. Numerical simulation of hard object damage based on Johnson-Cook model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009. (in Chinese

    JI Yuhui. Numerical simulation of hard object damage based on Johnson-Cook model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese)
    [18] 尹冬梅. 高速旋转叶片的外物损伤行为研究[D]. 南京: 南京理工大学,2009. YIN Dongmei. Research on the action of foreign object damage of high speed rotating blade[D]. Nanjing: Nanjing University of Science and Technology,2009. (in Chinese

    YIN Dongmei. Research on the action of foreign object damage of high speed rotating blade[D]. Nanjing: Nanjing University of Science and Technology, 2009. (in Chinese)
    [19] KAY G. Failure modeling of titanium-6Al-4V and 2024-T3 aluminum with the johnson-cook material model[R]. Washington DC: Federal Aviation Administration (FAA),2003.
    [20] 孟卓,孙秦. 冰雹的数值模拟方法初探[J]. 航空计算技术,2009,39(1): 22-26. MENG Zhuo,SUN Qin. Methods of numerical simulation on hailstone[J]. Aeronautical Computing Technique,2009,39(1): 22-26. (in Chinese

    MENG Zhuo, SUN Qin. Methods of numerical simulation on hailstone[J]. Aeronautical Computing Technique, 2009, 39(1): 22-26. (in Chinese)
  • 加载中
图(26) / 表(3)
计量
  • 文章访问数:  27
  • HTML浏览量:  25
  • PDF量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-19
  • 网络出版日期:  2024-02-29

目录

    /

    返回文章
    返回