Simulation method of hail impacting on fan blades and experiments
-
摘要:
采用光滑粒子流体动力学法和拉格朗日法对冰撞过程进行仿真分析,开展了冰雹撞击钢板、撞击钛合金薄板、撞击非旋转态真实风扇叶片的打靶试验验证。结果表明:采用的考虑压缩强度与应变率相关的冰雹本构模型和SPH法能够很好的描述冰雹撞击过程,仿真结果与打靶试验结果吻合良好。基于该本构模型和算法,对某发动机在爬升状态下吞入直径1.1 cm的冰雹情况进行仿真,揭示了叶片不同部位冰撞后的变形情况,发现撞击叶尖部位带来的塑性应变最大。开展整机吞冰试验,试验获得的冰雹撞击部位的叶片变形长度与仿真结果误差小于10%。改进了叶片前缘半径和最大厚度分布,提升了叶片的抗冰撞能力,为风扇叶片抗冰撞改进设计积累了良好的设计经验。
Abstract:Smooth particle hydrodynamics (SPH) method and Lagrange method were used to simulate the process of hail impacting and the experiments of a Hail impacting on a plate, a titanium alloy sheet and a real fan disk were carried out. The results showed that the high strain rate constitutive model and Smooth particle hydrodynamics (SPH) method could simulate the process of hail impacting precisely; the simulation results had a good agreement with the experiment results. Based on this constitutive model and method, simulation of a hail of 1.1 cm diameter impacting into an aero engine at the state of climbing was carried out and the deformation of the blades after impacting was revealed. The result showed that impacting on the tip site of the blade would have the worst situation of plastic strain. An aero engine hail impacting test was carried out, and the deformation error of the impacted blade and simulation results was less than 10%. The front edge radius and the maximum thickness distribution of the blade were improved, and the anti-hail impacting ability of the blade was enhanced, and the improved design experiences had been accumulated for anti-hail impacting.
-
Key words:
- fan blade /
- hail impacting /
- smooth particle hydrodynamics /
- strain rate /
- deformation
-
表 1 撞击真实静止风扇叶片试验参数
Table 1. Parameters of hail-impacting on real stationary fan blade test
编号 冰雹直径d/cm 入射速度v/(m/s) 撞击部位 B-1 2.5 117 4#进气边前缘 B-2 5.0 125 10#叶片叶尖 表 2 仿真与试验结果对比
Table 2. Comparison of the simulation and the test
编号 损伤
形式试验变形/mm 仿真变形/mm L1 L2 L3 L1 L2 L3 B-1 凹坑 7 9 B-2 卷曲 30 38 28 30 40 27 表 3 叶片结构参数改进对比
Table 3. Comparison of improved blade structural parameters
方案 d/mm h/mm L/mm α/(°) 原始方案 0.28 2 40.2 1.23 改进方案 0.62 2.2 27 1.68 -
[1] 陈光. 航空发动机结构设计分析[M]. 2版. 北京: 北京航空航天大学出版社,2014. CHEN Guang. Structural design analysis of aero-engine[M]. 2nd ed. Beijing: Beijing University of Aeronautics and Astronautics Press,2014. (in ChineseCHEN Guang. Structural design analysis of aero-engine[M]. 2nd ed. Beijing: Beijing University of Aeronautics and Astronautics Press, 2014. (in Chinese) [2] HORSLEY J. The ‘Rolls-Royce’ way of validating fan integrity: AIAA 93-2602 [R]. Derby,England: AIAA,1993. [3] SINGH S,MASIULANIEC K,DEWITT K,et al. Measurements of the impact forces of shed ice striking a surface[C]//Proceedings of the 32nd Aerospace Sciences Meeting and Exhibit. Reston,US: AIAA,1994: 1-23. [4] CARNEY K S,BENSON D J,DUBOIS P,et al. A phenomenological high strain rate model with failure for ice[J]. International Journal of Solids and Structures,2006,43(25/26): 7820-7839. [5] PEREIRA J M,PADULA S,REVILOCK D,et al. Forces generated by high velocity impact of ice on a rigid structure[R]. Washington DC: National Aeronautics and Space Administration,2006. [6] MCNAUGHTON I I,CHISMAN S W. A study of hail impact at high speed on light alloy plates[R]. Trenton,US: Naval Air Warfare Center Aircraft,1940. [7] HAYDUK R J,THOMSON R G. An improved analytical treatment of the denting of thin sheets by hail: NASA TN D-6102 [R]. Washington DC: National Aeronautics and Space Administration,1971. [8] COMBESCURE A,CHUZEL-MARMOT Y,FABIS J. Experimental study of high-velocity impact and fracture of ice[J]. International Journal of Solids and Structures,2011,48(20): 2779-2790. doi: 10.1016/j.ijsolstr.2011.05.028 [9] KIM H,KEUNE J N. Compressive strength of ice at impact strain rates[J]. Journal of Materials Science,2007,42(8): 2802-2806. doi: 10.1007/s10853-006-1376-x [10] 张丽芬,葛鑫,刘振侠. 人工制备冰雹的力学性能试验研究[J]. 航空学报,2021,42(2): 224255. ZHANG Lifen,GE Xin,LIU Zhenxia. Experimental study on mechanical properties of artificial hail[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 224255. (in ChineseZHANG Lifen, GE Xin, LIU Zhenxia. Experimental study on mechanical properties of artificial hail[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224255. (in Chinese) [11] 徐曼,陈勇,王安正. ASTM F320-2010标准冰雹的抗压力学性能实验研究[J]. 科学技术与工程,2016,16(16): 290-294. XU Man,CHEN Yong,WANG Anzheng. Experiment on nonlinear mechanics of artificial hail based on ASTM F320-2010[J]. Science Technology and Engineering,2016,16(16): 290-294. (in ChineseXU Man, CHEN Yong, WANG Anzheng. Experiment on nonlinear mechanics of artificial hail based on ASTM F320-2010[J]. Science Technology and Engineering, 2016, 16(16): 290-294. (in Chinese) [12] 陈星. 基于ABAQUS的冰雹撞击有限元分析[D]. 呼和浩特: 内蒙古工业大学,2013. CHEN Xing. Finite element analysis for hail impact dependent on ABAOUS[D]. Hohhot: Inner Mongolia University of Technology,2013. (in ChineseCHEN Xing. Finite element analysis for hail impact dependent on ABAOUS[D]. Hohhot: Inner Mongolia University of Technology, 2013. (in Chinese) [13] 李静. 基于LS-DYNA的冰雹冲击铝合金平板数值模拟[D]. 南京: 东南大学,2015. LI Jing. Numerical simulation of hail impact on aluminum alloy plate based on LS-DYNA[D]. Nanjing: Southeast University,2015. (in ChineseLI Jing. Numerical simulation of hail impact on aluminum alloy plate based on LS-DYNA[D]. Nanjing: Southeast University, 2015. (in Chinese) [14] 张海洋,杜少辉,任磊. 航空发动机风扇叶片冰雹撞击仿真[J]. 航空发动机,2021,47(1): 42-46. ZHANG Haiyang,DU Shaohui,REN Lei. Simulation study on hail impact of aeroengine fan blade[J]. Aeroengine,2021,47(1): 42-46. (in ChineseZHANG Haiyang, DU Shaohui, REN Lei. Simulation study on hail impact of aeroengine fan blade[J]. Aeroengine, 2021, 47(1): 42-46. (in Chinese) [15] JOHNSON G R,COOK W. A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[C]// Proceedings of the 7th International symposium on Ballistics. Hague,Holland: International Ballistics Committee,1983: 541-547. [16] 胡绪腾. 外物损伤及其对钛合金叶片高循环疲劳寿命强度的影响[D]. 南京: 南京航空航天大学,2009. HU Xuteng. Foreign object damage and its effect on high cycle fatigue strength of titanium alloy engine blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009. (in ChineseHU Xuteng. Foreign object damage and its effect on high cycle fatigue strength of titanium alloy engine blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) [17] 季玉辉. 基于Johnson-Cook模型的硬物损伤数值模拟研究[D]. 南京: 南京航空航天大学,2009. JI Yuhui. Numerical simulation of hard object damage based on Johnson-Cook model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009. (in ChineseJI Yuhui. Numerical simulation of hard object damage based on Johnson-Cook model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) [18] 尹冬梅. 高速旋转叶片的外物损伤行为研究[D]. 南京: 南京理工大学,2009. YIN Dongmei. Research on the action of foreign object damage of high speed rotating blade[D]. Nanjing: Nanjing University of Science and Technology,2009. (in ChineseYIN Dongmei. Research on the action of foreign object damage of high speed rotating blade[D]. Nanjing: Nanjing University of Science and Technology, 2009. (in Chinese) [19] KAY G. Failure modeling of titanium-6Al-4V and 2024-T3 aluminum with the johnson-cook material model[R]. Washington DC: Federal Aviation Administration (FAA),2003. [20] 孟卓,孙秦. 冰雹的数值模拟方法初探[J]. 航空计算技术,2009,39(1): 22-26. MENG Zhuo,SUN Qin. Methods of numerical simulation on hailstone[J]. Aeronautical Computing Technique,2009,39(1): 22-26. (in ChineseMENG Zhuo, SUN Qin. Methods of numerical simulation on hailstone[J]. Aeronautical Computing Technique, 2009, 39(1): 22-26. (in Chinese)