Workable mode optimization design method for dual-rotor system with inter-shaft bearing
-
摘要:
为解决航空发动机双转子系统无法避开临界转速的问题,建立带中介轴承的双转子系统模型,考虑不平衡敏感度、阻尼器效果和中介轴承载荷影响,构建低压激励模态可容度评价函数和高压激励模态可容度评价函数,确定双转子“可容模态”优化设计目标函数和约束条件,建立了带中介轴承双转子系统的“可容模态”优化设计方法。研究发现,采用“可容模态”优化设计方法,与传统的“临界转速裕度”准则设计相比,带中介轴承的双转子系统轮盘最大振幅减小39.83%,轴系总质量减轻2.32%,支承外传力减小64.98%,表明所建立的带中介轴承双转子系统的“可容模态”优化设计方法是有效的。
Abstract:In order to solve the problem that the dual-rotor system of aero-engine cannot avoid the critical speed, a model of dual-rotor system with inter-shaft bearing was established. Considering the influence of unbalance sensitivity, damper effect and the load effect of inter-shaft bearing, the tolerability evaluation functions of low-pressure and high-pressure rotor excited modes were constructed, the tolerability objective function and the constraint condition for optimization design on workable mode of dual-rotor were confirmed, and the optimization design method for the workable mode of dual-rotor system with inter-shaft bearing was established. It was found that compared with the traditional critical speed margin design criterion, the maximum amplitude of the disk of the dual-rotor system with inter-shaft bearing was reduced by 39.83%, the total mass of the shafting was reduced by 2.32%, and the external force of the fulcrum was reduced by 64.98% by using the optimization design method for the workable mode, indicating that the optimization design method for the workable mode of dual-rotor system with inter-shaft bearing was effective.
-
Key words:
- aero-engine /
- inter-shaft bearing /
- dual-rotor system /
- workable mode /
- dynamic optimization design
-
表 1 轴段参数
Table 1. Shaft parameters
转子 轴段 l/mm r/mm R/mm 低压转子 1-2 50.80 7.00 15.24 2-3 50.80 7.00 15.24 3-4 50.80 7.00 15.24 4-5 88.90 7.00 15.24 5-6 76.20 7.00 15.24 6-7 76.20 7.00 15.24 7-8 50.80 7.00 15.24 8-9 50.80 7.00 15.24 9 0 0 0 高压转子 10-11 50.80 19.05 25.40 11-12 76.20 19.05 25.40 12-13 76.20 19.05 25.40 13-14 50.80 19.05 25.40 表 2 叶盘参数
Table 2. Disk parameters
转子 节点 m/kg Ip/10−4
(kg·m2)Id/10−4
(kg·m2)低压转子 1 4.90 271.20 135.60 8 4.20 203.40 101.70 高压转子 11 3.33 146.90 73.40 13 2.277 97.2 48.6 表 3 支承参数
Table 3. Fulcrum parameters
转子 节点 s/107 (N/m) 低压转子 2 2.63 3 2.63 7,14 0.876 9 1.75 高压转子 10 1.75 表 4 双转子系统临界转速
Table 4. Critical speed of dual-rotor system
激励转子 模态阶数 Ωl /(r/min) Ωh /(r/min) 低压转子 1 11946 17919 2 16827 25241 高压转子 1 7612 11418 2 10443 15664 3 14424 21635 表 5 遗传算法关键参数
Table 5. Key parameters of genetic algorithm
参数 数值 遗传代数 80 种群数量 5 种群个体 50 迁移率 0.2 代沟 0.9 交叉概率 0.7 变异概率 0.1 表 6 轴段参数优化结果
Table 6. Optimization results of shaft parameters
转子 轴段 l/mm r/mm R/mm 低压转子 1-2 45.97 6.72 15.63 2-3 59.39 7.57 15.96 3-4 40.64 6.58 14.76 4-5 106.68 7.25 13.88 5-6 78.71 5.90 16.44 6-7 82.28 6.37 13.88 7-8 56.94 7.12 15.79 8-9 48.39 6.90 15.13 9 0 0 0 高压转子 10-11 40.89 20.57 24.71 11-12 65.83 20.88 26.88 12-13 74.99 18.72 22.93 13-14 58.56 19.90 27.18 表 7 叶盘参数优化结果
Table 7. Optimization results of disk parameters
转子 节点 m/kg Ip/10−4
(kg·m2)Id/10−4
(kg·m2)低压转子 1 4.62 255.96 127.98 8 4.04 195.46 97.73 高压转子 11 3.66 161.56 80.72 13 2.31 98.67 49.33 表 8 支承参数优化结果
Table 8. Optimization results of fulcrum parameters
转子 节点 s/107 (N/m) 低压转子 2 0.466 3 7.23 7,14 5.21 9 0.906 高压转子 10 0.05 表 9 双转子系统可容度评价函数对比
Table 9. Comparison of dual-rotor system tolerability evaluation function
激励转子 模态 评价函数 优化前 优化后 低压转子 1 0.72 0.98 2 0.89 0.85 3 0.79 0.92 高压转子 1 0.77 0.99 2 0.81 0.87 3 0.82 0.91 表 10 “临界转速裕度”准则下轴段参数设计结果
Table 10. Shaft parameters design results under critical speed margin criterion
转子 轴段 l/mm r/mm R/mm 低压转子 1-2 42.20 7.48 13.98 2-3 43.60 7.48 13.98 3-4 41.16 7.48 14.00 4-5 71.91 7.48 14.01 5-6 69.94 7.48 14.23 6-7 61.71 7.48 14.27 7-8 48.04 7.48 14.27 8-9 42.73 7.48 13.87 9 0 0 0 高压转子 10-11 45.70 17.36 23.25 11-12 63.50 17.36 23.28 12-13 61.65 17.36 23.38 13-14 41.20 17.36 23.45 表 11 “临界转速裕度”准则下叶盘参数设计结果
Table 11. Disk parameters design results under critical speed margin criterion
转子 节点 m/kg Ip/10−4
(kg·m2)Id/10−4
(kg·m2)低压转子 1 5.39 298.32 149.16 8 4.12 199.33 99.97 高压转子 11 3.43 151.31 75.65 13 2.21 94.28 47.14 表 12 “临界转速裕度”准则下支承参数设计结果
Table 12. Fulcrum parameters design results under critical speed margin criterion
转子 节点 s/107 (N/m) 低压转子 2 0.776 3 0.204 7,14 0.177 9 0.0759 高压转子 10 2.77 表 13 “临界转速裕度”准则下双转子系统临界转速
Table 13. Critical speed of dual-rotor system under critical speed margin criterion
激励转子 模态 Ωl /
(r/min)Ωh /
(r/min)低压转子 1 3809 5714 2 11670 17505 3 13301 19951 高压转子 1 2460 3689 2 7419 11128 3 8478 12717 表 14 双转子系统附加阻尼
Table 14. Added damping of dual-rotor system
转子 节点 c/(N·s/m) 低压转子 2 2000 3 300 7,14 300 9 1000 高压转子 10 2 000 表 15 优化结果对比
Table 15. Comparison of optimization results
项目 “临界转速裕度”
准则设计“可容模态”
优化设计变化量/
%轮盘最大振幅/μm 89.63 64.10 −39.83 轴系总质量/kg 18.06 17.65 −2.32 支承最大
外传力/N70.33 24.63 −64.98 -
[1] 航空发动机设计手册总编委. 航空发动机设计手册: 第19册 转子动力学及整机振动[M]. 北京: 航空工业出版社,2000. [2] 廖明夫. 航空发动机转子动力学[M]. 西安: 西北工业大学出版社,2015. [3] 顾家柳. 转子动力学[M]. 北京: 国防工业出版社,1985. [4] 钟一谔. 转子动力学[M]. 北京: 清华大学出版社,1987. [5] 沈达宽. 航空发动机强度计算[M]. 北京: 国防工业出版社,1980. [6] SHIAU T N,CHANG J R. Multi-objective optimization of rotor-bearing system with critical speed constraints[J]. Journal of Engineering for Gas Turbines and Power,1993,115(2): 246-255. doi: 10.1115/1.2906701 [7] KIM Y H,TAN A,YANG B S,et al. Optimum shape design of rotating shaft by ESO method[J]. Journal of Mechanical Science and Technology,2007,21(7): 1039-1047. doi: 10.1007/BF03027653 [8] 罗忠,闫宇龙,韩清凯,等. 转子-轴承系统的动力学相似及其轴承参数的影响分析[J]. 振动与冲击,2012,31(增刊): 12-16. LUO Zhong,YAN Yulong,HAN Qingkai,et al. Dynamic similarity of rotor-bearing system and influence of bearing parameters[J]. Journal of Vibration and Shock,2012,31(Suppl.): 12-16. (in ChineseLUO Zhong, YAN Yulong, HAN Qingkai, et al. Dynamic similarity of rotor-bearing system and influence of bearing parameters[J]. Journal of Vibration and Shock, 2012, 31(Suppl.): 12-16. (in Chinese) [9] VANCE J M. Rotor dynamics of turnomachinery[M]. New York: John Wiley & Sons,1988. [10] HOLMES R. The non-linear performance of squeeze-film bearings[J]. Journal of Mechanical Engineering Science,1972,14(1): 74-77. doi: 10.1243/JMES_JOUR_1972_014_011_02 [11] LEVESLEY M C,HOLMES R. The effect of oil supply and sealing arrangements on the performance of squeeze-film dampers: an experimental study[J]. Proceedings of the Institution of Mechanical Engineers:Part J Journal of Engineering Tribology,1996,210(4): 221-232. [12] 金路. 航空发动机转子系统动力学优化设计方法研究[D]. 西安: 西北工业大学,2013. JING Lu. Research on dynamic optimization design method of aero-engine rotor system[D]. Xi’an: Northwestern Poly-technical University,2013. (in ChineseJING Lu. Research on dynamic optimization design method of aero-engine rotor system[D]. Xi’an: Northwestern Poly-technical University, 2013. (in Chinese) [13] 王东华,刘占生,窦唯. 基于混合遗传算法的转子系统优化设计[J]. 振动与冲击,2009,28(5): 87-91. WANG Donghua,LIU Zhansheng,DOU Wei. Rotordynamics optimization based on a hybrid genetic algorithm[J]. Journal of Vibration and Shock,2009,28(5): 87-91. (in Chinese doi: 10.3969/j.issn.1000-3835.2009.05.020WANG Donghua, LIU Zhansheng, DOU Wei. Rotordynamics optimization based on a hybrid genetic algorithm[J]. Journal of Vibration and Shock, 2009, 28(5): 87-91. (in Chinese) doi: 10.3969/j.issn.1000-3835.2009.05.020 [14] 刘展翅. 弹支挤压油膜阻尼器设计与特殊工况下阻尼器减振特性研究[D]. 西安: 西北工业大学,2016. LIU Zhanchi. Study of the squeeze film dampers design and the vibration attenuating characteristics under special conditions[D]. Xi’an: Northwestern Polytechnical University,2015. (in ChineseLIU Zhanchi. Study of the squeeze film dampers design and the vibration attenuating characteristics under special conditions[D]. Xi’an: Northwestern Polytechnical University, 2015. (in Chinese) [15] 李岩,廖明夫,蒋云帆,等. 航空发动机双转子系统“临界跟随” 现象的机理及影响[J]. 航空动力学报,2019,34(11): 2403-2413. LI Yan,LIAO Mingfu,JIANG Yunfan,et al. Mechanism and effect of “critical follower speed” on dual-rotor system of aero-engines[J]. Journal of Aerospace Power,2019,34(11): 2403-2413. (in ChineseLI Yan, LIAO Mingfu, JIANG Yunfan, et al. Mechanism and effect of “critical follower speed” on dual-rotor system of aero-engines[J]. Journal of Aerospace Power, 2019, 34(11): 2403-2413. (in Chinese) [16] 李岩. 航空发动机转子系统可容模态优化设计方法与实验研究[D]. 西安: 西北工业大学,2020. LI Yan. Optimization design and experimental verification of tolerable modes of aero-engine rotor systems[D]. Xi’an: Northwestern Polytechnical University,2020. (in ChineseLI Yan. Optimization design and experimental verification of tolerable modes of aero-engine rotor systems[D]. Xi’an: Northwestern Polytechnical University, 2020. (in Chinese) [17] 赵璐,廖明夫,薛永广,等. 航空发动机高压转子 “可容模态” 设计及实验验证[J]. 推进技术,2022,43(2): 318-330. ZHAO Lu,LIAO Mingfu,XUE Yongguang,et al. Workable mode design and experimental verification of aero-engine high pressure rotor[J]. Journal of Propulsion Technology,2022,43(2): 318-330. (in ChineseZHAO Lu, LIAO Mingfu, XUE Yongguang, et al. Workable mode design and experimental verification of aero-engine high pressure rotor[J]. Journal of Propulsion Technology, 2022, 43(2): 318-330. (in Chinese) [18] 黄江博,廖明夫,雷新亮,等. 航空发动机低压转子系统的 “可容模态” 设计及实验验证[J]. 航空动力学报,2022,37(5): 964-979. HUANG Jiangbo,LIAO Mingfu,LEI Xinliang,et al. Workable mode design and experimental verification of aero-engine low-pressure rotor system[J]. Journal of Aerospace Power,2022,37(5): 964-979. (in ChineseHUANG Jiangbo, LIAO Mingfu, LEI Xinliang, et al. Workable mode design and experimental verification of aero-engine low-pressure rotor system[J]. Journal of Aerospace Power, 2022, 37(5): 964-979. (in Chinese) -