Creep residual life prediction of DD6 single crystal superalloy considering microstructure evolution
-
摘要:
以DD6单晶高温合金为研究对象,通过描述微观组织演化现象分析材料位错运动硬化机制,建立考虑微观组织演化的多尺度蠕变本构模型;并通过表征蠕变损伤状态,提出考虑蠕变损伤的材料蠕变剩余寿命预测方法。试验结果表明,本文提出的蠕变模型比
θ 映射模型模拟精度提高了57.6%,模型参数比K-R损伤模型减少了1/3;基于蠕变剩余寿命模型的预测结果的平均预测误差为5.59%,说明模型的有效性。Abstract:DD6 single crystal superalloy was taken as the research object to analyse the hardening mechanism of material dislocation movement by describing the microstructure evolution phenomenon, and a multi-scale creep constitutive model considering microstructure evolution was established; then a creep residual life prediction method considering the creep damage by characterizing the creep damage state was proposed. The experimental results showed that the creep model improved the simulation accuracy by 57.6% compared with the
θ projection method, and the model parameters were reduced by 1/3 compared with the K-R damage model. The average prediction error of the creep residual life model prediction results was only 5.59%, indicating the validity of the model.-
Key words:
- DD6 /
- creep /
- constitutive model /
- microstructure evolution /
- residual life
-
表 1 蠕变本构模型参数
Table 1. Parameters of creep constitutive models
模型 参数 数值 粗化模型 ${\lambda _0}$/μm 0.518 $B$/10−6 (μm3/h) 2.579 $Q$/(kJ/mol) 268 筏化模型 $A'$ 39.7354 $n'$ 1.52 流动法则 $K$/MPa 1000(980 ℃) 93(1100 ℃) $n'$ 5.8(980 ℃) 10.6(1100 ℃) 位错硬化 $q$/GPa 3000(980 ℃) 1000(1100 ℃) $k$ 2000(980 ℃) 1710(1100 ℃) 位错绕越 $b$/nm 0.255 ${G_s}$/GPa 114 $\theta $ 0.200(980 ℃) 0.145(1100 ℃) $\kappa $ 2 γ′相剪切 $w$ 1.31(980 ℃) 0.80(1100 ℃) $ {\gamma _{{\rm{APB}}}} $/(J/m2) 0.1 蠕变损伤 ${\dot d_0}$ 0.90(980 ℃) 0.27(1100 ℃) $\chi $ 1.88(980 ℃) 2.50(1100 ℃) $\phi $ 0.5(980 ℃) 0.33(1100 ℃) $ {\tau _{\rm{c}}} $/MPa 277.6(980 ℃) 157.2(1100 ℃) $\beta $ 2.5 表 2 蠕变剩余寿命预测精度分析
Table 2. Accuracy of creep residual life prediction
项目 r2 残差
平方和/10−4试验
结果/h模型
预测值/h误差/% 材料1 0.978 7.23 99.9 101.6 1.7 材料2 0.993 1.59 71.5 74.1 3.64 材料3 0.981 5.17 30.6 34.1 11.44 平均 0.984 4.66 5.59 -
[1] 赵彩丽,刘新宝,郝巧娥,等. 高温金属构件蠕变寿命预测的研究进展[J]. 材料导报,2014,28(23): 55-59. ZHAO Caili,LIU Xinbao,HAO Qiaoe,et al. Progress in prediction methods of creep-rupture time for elevated-temperature metal components[J]. Materials Review,2014,28(23): 55-59. (in ChineseZHAO Caili, LIU Xinbao, HAO Qiaoe, et al. Progress in prediction methods of creep-rupture time for elevated-temperature metal components[J]. Materials Review, 2014, 28(23): 55-59. (in Chinese) [2] EPISHIN A,LINK T,KLINGELHÖFFER H,et al. Creep damage of single-crystal nickel base superalloys: mechanisms and effect on low cycle fatigue[J]. Materials at High Temperatures,2010,27(1): 53-59. doi: 10.3184/096034009X12603595726283 [3] REED R C,COX D C,RAE C M F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 ℃[J]. Materials Science and Engineering: A,2007,448(1/2): 88-96. [4] XIA Wanshun,ZHAO Xinbao,YUE Liang,et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: a review[J]. Journal of Alloys and Compounds,2020,819: 152954. doi: 10.1016/j.jallcom.2019.152954 [5] 柳晖,徐国平. 拉森-米勒蠕变寿命预测方法的研究[J]. 上海师范大学学报(自然科学版),2009,38(5): 489-491. LIU Hui,XU Guoping. Research of larson-miller creep life prediction[J]. Journal of Shanghai Normal University (Natural Sciences),2009,38(5): 489-491. (in ChineseLIU Hui, XU Guoping. Research of larson-miller creep life prediction[J]. Journal of Shanghai Normal University (Natural Sciences), 2009, 38(5): 489-491. (in Chinese) [6] 孟春玲,饶寿期. 涡轮叶片蠕变寿命预测方法研究[J]. 北京工商大学学报(自然科学版),2002,20(2): 52-55. MENG Chunling,RAO Shouqi. Study of predict methods about creep break life of turbine blade[J]. Journal of Beijing Institute of Light Indusry,2002,20(2): 52-55. (in ChineseMENG Chunling, RAO Shouqi. Study of predict methods about creep break life of turbine blade[J]. Journal of Beijing Institute of Light Indusry, 2002, 20(2): 52-55. (in Chinese) [7] 曹娟. 镍基单晶合金高温细观结构的演化模拟及蠕变模型研究[D]. 北京: 北京航空航天大学,2010. CAO Jian. Research on modelling of microstructure evolution and creep of Ni base single crystal at high temperature[D]. Beijing: Beihang university,2010. (in ChineseCAO Jian. Research on modelling of microstructure evolution and creep of Ni base single crystal at high temperature[D]. Beijing: Beihang university, 2010. (in Chinese) [8] FEDELICH B,KÜNECKE G,EPISHIN A,et al. Constitutive modelling of creep degradation due to rafting in single-crystalline Ni-base superalloys[J]. Materials Science and Engineering: A,2009,510/511: 273-277. doi: 10.1016/j.msea.2008.04.089 [9] GUO Zixu,HUANG Dawei,YAN Xiaojun. Physics-based modeling of γ/γ’ microstructure evolution and creep constitutive relation for single crystal superalloy[J]. International Journal of Plasticity,2021,137: 102916. doi: 10.1016/j.ijplas.2020.102916 [10] FAN Yanan,SHI Huiji,QIU Wenhui. Constitutive modeling of creep behavior in single crystal superalloys: effects of rafting at high temperatures[J]. Materials Science and Engineering: A,2015,644: 225-233. doi: 10.1016/j.msea.2015.07.058 [11] LIFSHITZ I M,SLYOZOV V V. The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids,1961,19(1/2): 35-50. [12] REED R C. The Superalloys: fundamentals and applications[M]. Cambridge,US: Cambridge University Press,2008. [13] REPPICH B. Some new aspects concerning particle hardening mechanisms in γ' precipitating Ni-base alloys: Ⅰ theoretical concept[J]. Acta Metallurgica,1982,30(1): 87-94. doi: 10.1016/0001-6160(82)90048-7 [14] REPPICH B,SCHEPP P,WEHNER G. Some new aspects concerning particle hardening mechanisms in γ' precipitating nickel-base alloys: Ⅱ experiments[J]. Acta Metallurgica,1982,30(1): 95-104. doi: 10.1016/0001-6160(82)90049-9 [15] ZHANG Chengjiang,HU Weibing,WEN Zhixun,et al. Creep residual life prediction of a nickel-based single crystal superalloy based on microstructure evolution[J]. Materials Science and Engineering: A,2019,756: 108-118. doi: 10.1016/j.msea.2019.03.132 [16] 张诚江,胡卫兵,王佳坡,等. 基于位错运动的镍基单晶各向异性蠕变寿命预测[J]. 稀有金属材料与工程,2019,48(12): 3930-3938. ZHANG Chengjiang,HU Weibing,WANG Jiapo,et al. Anisotropic creep life prediction of nickel-based single crystal based on dislocation movement[J]. Rare Metal Materials and Engineering,2019,48(12): 3930-3938. (in ChineseZHANG Chengjiang, HU Weibing, WANG Jiapo, et al. Anisotropic creep life prediction of nickel-based single crystal based on dislocation movement[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3930-3938. (in Chinese) [17] LIU Y F,ZHAO Y S,LIU C G,et al. Dependence on temperature of tensile properties of the single-crystal superalloy DD11[J]. Materials Science and Technology,2018,34(10): 1188-1196. doi: 10.1080/02670836.2018.1429043 [18] CORMIER J,CAILLETAUD G. Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations[J]. Materials Science and Engineering: A,2010,527(23): 6300-6312. doi: 10.1016/j.msea.2010.06.023 [19] LIANG Jianwei,WANG Jiapo,WEN Zhixun,et al. Analysis and prediction of non-isothermal creep behavior in Ni-based single crystal superalloy[J]. Materials Science and Engineering: A,2017,707: 559-566. doi: 10.1016/j.msea.2017.09.073 [20] KACHANOV L M,KRAJCINOVIC D. Introduction to continuum damage mechanics[J]. Journal of Applied Mechanics,1987,54(2): 481. [21] RABOTNOV Y N,LECKIE F A,PRAGER W. Creep problems in structural members[J]. Journal of Applied Mechanics,1970,37(1): 249. [22] YEH N M,KREMPL E,DANGVAN K,et al. Advances in multiaxial fatigue[M]. Philadelphia,US: American Society for Testing and Materials,1993.