留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑微观组织演化的DD6单晶高温合金蠕变剩余寿命预测

尤文超 王荣桥 胡殿印 赵炎 潘锦超 张斌 陈校生

尤文超, 王荣桥, 胡殿印, 等. 考虑微观组织演化的DD6单晶高温合金蠕变剩余寿命预测[J]. 航空动力学报, 2024, 39(9):20220628 doi: 10.13224/j.cnki.jasp.20220628
引用本文: 尤文超, 王荣桥, 胡殿印, 等. 考虑微观组织演化的DD6单晶高温合金蠕变剩余寿命预测[J]. 航空动力学报, 2024, 39(9):20220628 doi: 10.13224/j.cnki.jasp.20220628
YOU Wenchao, WANG Rongqiao, HU Dianyin, et al. Creep residual life prediction of DD6 single crystal superalloy considering microstructure evolution[J]. Journal of Aerospace Power, 2024, 39(9):20220628 doi: 10.13224/j.cnki.jasp.20220628
Citation: YOU Wenchao, WANG Rongqiao, HU Dianyin, et al. Creep residual life prediction of DD6 single crystal superalloy considering microstructure evolution[J]. Journal of Aerospace Power, 2024, 39(9):20220628 doi: 10.13224/j.cnki.jasp.20220628

考虑微观组织演化的DD6单晶高温合金蠕变剩余寿命预测

doi: 10.13224/j.cnki.jasp.20220628
基金项目: 国家自然科学基金(52022007,51875020); 国家科技重大专项(2017-Ⅳ-0004-0041, J2019-Ⅳ-0009-0077, J2019-Ⅳ-0016-0084)
详细信息
    作者简介:

    尤文超(1999-),男,硕士生,主要从事航空发动机热端部件结构强度相关方向的研究。E-mail:youwc@buaa.edu.cn

    通讯作者:

    胡殿印(1980-),女,教授,博士,研究领域为发动机结构强度及疲劳可靠性。E-mail:hdy@buaa.edu.cn

  • 中图分类号: V23

Creep residual life prediction of DD6 single crystal superalloy considering microstructure evolution

  • 摘要:

    以DD6单晶高温合金为研究对象,通过描述微观组织演化现象分析材料位错运动硬化机制,建立考虑微观组织演化的多尺度蠕变本构模型;并通过表征蠕变损伤状态,提出考虑蠕变损伤的材料蠕变剩余寿命预测方法。试验结果表明,本文提出的蠕变模型比θ映射模型模拟精度提高了57.6%,模型参数比K-R损伤模型减少了1/3;基于蠕变剩余寿命模型的预测结果的平均预测误差为5.59%,说明模型的有效性。

     

  • 图 1  γ/γ′相的胞元模型[9]

    Figure 1.  Unit cell model for γ/γ′ phases[9]

    图 2  1100 ℃下基体通道宽度演化

    Figure 2.  Evolution of substrate channel width at 1100 ℃

    图 3  基于本文模型的蠕变变形预测值与试验结果对比

    Figure 3.  Comparison of creep deformation based on article model and test results

    图 4  基于K-R损伤模型的蠕变变形预测值和试验结果对比

    Figure 4.  Comparison of creep deformation based on K-R damage model and test results

    图 5  基于θ映射模型的蠕变变形预测值和试验结果对比

    Figure 5.  Comparison of creep deformation based on θ projection method and test results

    图 6  残差平方和对比

    Figure 6.  Comparison of residual sum of squares

    图 7  蠕变剩余寿命预测和试验结果对比

    Figure 7.  Comparison of creep residual life prediction and test results

    表  1  蠕变本构模型参数

    Table  1.   Parameters of creep constitutive models

    模型 参数 数值
    粗化模型 ${\lambda _0}$/μm 0.518
    $B$/10−6 (μm3/h) 2.579
    $Q$/(kJ/mol) 268
    筏化模型 $A'$ 39.7354
    $n'$ 1.52
    流动法则 $K$/MPa 1000(980 ℃)
    93(1100 ℃)
    $n'$ 5.8(980 ℃)
    10.6(1100 ℃)
    位错硬化 $q$/GPa 3000(980 ℃)
    1000(1100 ℃)
    $k$ 2000(980 ℃)
    1710(1100 ℃)
    位错绕越 $b$/nm 0.255
    ${G_s}$/GPa 114
    $\theta $ 0.200(980 ℃)
    0.145(1100 ℃)
    $\kappa $ 2
    γ′相剪切 $w$ 1.31(980 ℃)
    0.80(1100 ℃)
    $ {\gamma _{{\rm{APB}}}} $/(J/m2 0.1
    蠕变损伤 ${\dot d_0}$ 0.90(980 ℃)
    0.27(1100 ℃)
    $\chi $ 1.88(980 ℃)
    2.50(1100 ℃)
    $\phi $ 0.5(980 ℃)
    0.33(1100 ℃)
    $ {\tau _{\rm{c}}} $/MPa 277.6(980 ℃)
    157.2(1100 ℃)
    $\beta $ 2.5
    下载: 导出CSV

    表  2  蠕变剩余寿命预测精度分析

    Table  2.   Accuracy of creep residual life prediction

    项目 r2 残差
    平方和/10−4
    试验
    结果/h
    模型
    预测值/h
    误差/%
    材料10.9787.2399.9101.61.7
    材料20.9931.5971.574.13.64
    材料30.9815.1730.634.111.44
    平均0.9844.665.59
    下载: 导出CSV
  • [1] 赵彩丽,刘新宝,郝巧娥,等. 高温金属构件蠕变寿命预测的研究进展[J]. 材料导报,2014,28(23): 55-59. ZHAO Caili,LIU Xinbao,HAO Qiaoe,et al. Progress in prediction methods of creep-rupture time for elevated-temperature metal components[J]. Materials Review,2014,28(23): 55-59. (in Chinese

    ZHAO Caili, LIU Xinbao, HAO Qiaoe, et al. Progress in prediction methods of creep-rupture time for elevated-temperature metal components[J]. Materials Review, 2014, 28(23): 55-59. (in Chinese)
    [2] EPISHIN A,LINK T,KLINGELHÖFFER H,et al. Creep damage of single-crystal nickel base superalloys: mechanisms and effect on low cycle fatigue[J]. Materials at High Temperatures,2010,27(1): 53-59. doi: 10.3184/096034009X12603595726283
    [3] REED R C,COX D C,RAE C M F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 ℃[J]. Materials Science and Engineering: A,2007,448(1/2): 88-96.
    [4] XIA Wanshun,ZHAO Xinbao,YUE Liang,et al. Microstructural evolution and creep mechanisms in Ni-based single crystal superalloys: a review[J]. Journal of Alloys and Compounds,2020,819: 152954. doi: 10.1016/j.jallcom.2019.152954
    [5] 柳晖,徐国平. 拉森-米勒蠕变寿命预测方法的研究[J]. 上海师范大学学报(自然科学版),2009,38(5): 489-491. LIU Hui,XU Guoping. Research of larson-miller creep life prediction[J]. Journal of Shanghai Normal University (Natural Sciences),2009,38(5): 489-491. (in Chinese

    LIU Hui, XU Guoping. Research of larson-miller creep life prediction[J]. Journal of Shanghai Normal University (Natural Sciences), 2009, 38(5): 489-491. (in Chinese)
    [6] 孟春玲,饶寿期. 涡轮叶片蠕变寿命预测方法研究[J]. 北京工商大学学报(自然科学版),2002,20(2): 52-55. MENG Chunling,RAO Shouqi. Study of predict methods about creep break life of turbine blade[J]. Journal of Beijing Institute of Light Indusry,2002,20(2): 52-55. (in Chinese

    MENG Chunling, RAO Shouqi. Study of predict methods about creep break life of turbine blade[J]. Journal of Beijing Institute of Light Indusry, 2002, 20(2): 52-55. (in Chinese)
    [7] 曹娟. 镍基单晶合金高温细观结构的演化模拟及蠕变模型研究[D]. 北京: 北京航空航天大学,2010. CAO Jian. Research on modelling of microstructure evolution and creep of Ni base single crystal at high temperature[D]. Beijing: Beihang university,2010. (in Chinese

    CAO Jian. Research on modelling of microstructure evolution and creep of Ni base single crystal at high temperature[D]. Beijing: Beihang university, 2010. (in Chinese)
    [8] FEDELICH B,KÜNECKE G,EPISHIN A,et al. Constitutive modelling of creep degradation due to rafting in single-crystalline Ni-base superalloys[J]. Materials Science and Engineering: A,2009,510/511: 273-277. doi: 10.1016/j.msea.2008.04.089
    [9] GUO Zixu,HUANG Dawei,YAN Xiaojun. Physics-based modeling of γ/γ’ microstructure evolution and creep constitutive relation for single crystal superalloy[J]. International Journal of Plasticity,2021,137: 102916. doi: 10.1016/j.ijplas.2020.102916
    [10] FAN Yanan,SHI Huiji,QIU Wenhui. Constitutive modeling of creep behavior in single crystal superalloys: effects of rafting at high temperatures[J]. Materials Science and Engineering: A,2015,644: 225-233. doi: 10.1016/j.msea.2015.07.058
    [11] LIFSHITZ I M,SLYOZOV V V. The kinetics of precipitation from supersaturated solid solutions[J]. Journal of Physics and Chemistry of Solids,1961,19(1/2): 35-50.
    [12] REED R C. The Superalloys: fundamentals and applications[M]. Cambridge,US: Cambridge University Press,2008.
    [13] REPPICH B. Some new aspects concerning particle hardening mechanisms in γ' precipitating Ni-base alloys: Ⅰ theoretical concept[J]. Acta Metallurgica,1982,30(1): 87-94. doi: 10.1016/0001-6160(82)90048-7
    [14] REPPICH B,SCHEPP P,WEHNER G. Some new aspects concerning particle hardening mechanisms in γ' precipitating nickel-base alloys: Ⅱ experiments[J]. Acta Metallurgica,1982,30(1): 95-104. doi: 10.1016/0001-6160(82)90049-9
    [15] ZHANG Chengjiang,HU Weibing,WEN Zhixun,et al. Creep residual life prediction of a nickel-based single crystal superalloy based on microstructure evolution[J]. Materials Science and Engineering: A,2019,756: 108-118. doi: 10.1016/j.msea.2019.03.132
    [16] 张诚江,胡卫兵,王佳坡,等. 基于位错运动的镍基单晶各向异性蠕变寿命预测[J]. 稀有金属材料与工程,2019,48(12): 3930-3938. ZHANG Chengjiang,HU Weibing,WANG Jiapo,et al. Anisotropic creep life prediction of nickel-based single crystal based on dislocation movement[J]. Rare Metal Materials and Engineering,2019,48(12): 3930-3938. (in Chinese

    ZHANG Chengjiang, HU Weibing, WANG Jiapo, et al. Anisotropic creep life prediction of nickel-based single crystal based on dislocation movement[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3930-3938. (in Chinese)
    [17] LIU Y F,ZHAO Y S,LIU C G,et al. Dependence on temperature of tensile properties of the single-crystal superalloy DD11[J]. Materials Science and Technology,2018,34(10): 1188-1196. doi: 10.1080/02670836.2018.1429043
    [18] CORMIER J,CAILLETAUD G. Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations[J]. Materials Science and Engineering: A,2010,527(23): 6300-6312. doi: 10.1016/j.msea.2010.06.023
    [19] LIANG Jianwei,WANG Jiapo,WEN Zhixun,et al. Analysis and prediction of non-isothermal creep behavior in Ni-based single crystal superalloy[J]. Materials Science and Engineering: A,2017,707: 559-566. doi: 10.1016/j.msea.2017.09.073
    [20] KACHANOV L M,KRAJCINOVIC D. Introduction to continuum damage mechanics[J]. Journal of Applied Mechanics,1987,54(2): 481.
    [21] RABOTNOV Y N,LECKIE F A,PRAGER W. Creep problems in structural members[J]. Journal of Applied Mechanics,1970,37(1): 249.
    [22] YEH N M,KREMPL E,DANGVAN K,et al. Advances in multiaxial fatigue[M]. Philadelphia,US: American Society for Testing and Materials,1993.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  61
  • HTML浏览量:  32
  • PDF量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 网络出版日期:  2024-01-25

目录

    /

    返回文章
    返回