留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行器沉积静电充电电流计算方法

童晨 李海龙 尚嘉伟 段泽民 司晓亮 李志宝 黄业园 孙国庆 颜伟 仇善良

童晨, 李海龙, 尚嘉伟, 等. 飞行器沉积静电充电电流计算方法[J]. 航空动力学报, 2024, 39(X):20220633 doi: 10.13224/j.cnki.jasp.20220633
引用本文: 童晨, 李海龙, 尚嘉伟, 等. 飞行器沉积静电充电电流计算方法[J]. 航空动力学报, 2024, 39(X):20220633 doi: 10.13224/j.cnki.jasp.20220633
TONG Chen, LI Hailong, SHANG Jiawei, et al. Calculation method of deposition electrostatic charging current for aircraft[J]. Journal of Aerospace Power, 2024, 39(X):20220633 doi: 10.13224/j.cnki.jasp.20220633
Citation: TONG Chen, LI Hailong, SHANG Jiawei, et al. Calculation method of deposition electrostatic charging current for aircraft[J]. Journal of Aerospace Power, 2024, 39(X):20220633 doi: 10.13224/j.cnki.jasp.20220633

飞行器沉积静电充电电流计算方法

doi: 10.13224/j.cnki.jasp.20220633
基金项目: 国家重大专项(J2019-Ⅷ-0009-0170,MJZ5-2N22)
详细信息
    作者简介:

    童晨(1995-),男,博士生,主要从事脉冲功率技术、电流磁场测量相关研究

    通讯作者:

    仇善良(1983-),男,副研究员,博士,研究领域为复杂电磁环境效应分析及仿真。E-mail:wobenshanliang1983@163.com

  • 中图分类号: V19;O441.4

Calculation method of deposition electrostatic charging current for aircraft

  • 摘要:

    创新性地利用有效投影面积的概念来计算有效面积系数K。在Comsol软件中利用Spalart-Allmaras(S-A)湍流模型与粒子曳力模型改进了标准中的计算公式,以某型飞机为例进行了流场及粒子追踪仿真。结果发现粒子直径越大,有效投影面积越大;飞行速度高,粒子碰撞数量越多;随着巡航高度的增加充电电流密度增加。最终得出飞机的充电电流密度最大为395 μA/m2,与实际观测值接近误差在1.25%以内。

     

  • 图 1  仿真端口设置

    Figure 1.  Simulation port setup

    图 2  网格质量图

    Figure 2.  Grid quality diagram

    图 3  不同粒子面密度对有效投影面积的影响

    Figure 3.  Effect of different particle concentrations on effective projected area

    图 4  近地面Ma=0.8时50 μm粒子平均碰撞速度

    Figure 4.  Average collision velocity of 50 μm particles at Ma=0.8 near ground

    图 5  近地面Ma=0.8时50 μm粒子碰撞个数

    Figure 5.  Number of 50 μm particle collisions at Ma=0.8 near ground

    图 6  粒子直径对充电电流密度的影响

    Figure 6.  Effect of particle diameter on charging current density

    图 7  单粒子起电量与碰撞个数和高度的关系

    Figure 7.  Relationship between single particle charge amount and collision number and height

    图 8  不同马赫数下粒子碰撞速度与有效投影面积的关系

    Figure 8.  Relationship between particle collision velocity and effective projected area at different Mach numbers

    图 9  粒子在流场作用下运动轨迹的改变

    Figure 9.  Change of particle’s trajectory under action of flow field

    表  1  不同粒子直径的充电电流密度计算

    Table  1.   Calculation of charging current density with different particle diameters

    参数 数值
    粒子直径/μm 50 100 200 400
    平均碰撞速度/(m/s) 184 189 206 226
    单粒子起电量/pC 0.5 2.2 9.8 43.3
    粒子碰撞个数 5136 8013 10867 13393
    有效迎风面积/m2 10.2 16.0 21.7 26.7
    充电
    总电流/
    μA
    $n_{\mathrm{p}} $/104
    (个/m3
    2 30 197 1169 6322
    5 77 494 2922 15807
    充电
    电流密度/
    (μA/m2
    $n_{\mathrm{p}} $/104
    (个/m3
    2 0.77 4 29 158
    5 1.92 12 73 395
    下载: 导出CSV
  • [1] 杨剑,张鹏. 飞机电磁兼容性试验与试飞研究[J]. 电子科技,2011,24(2): 66-69. YANG Jian,ZHANG Peng. Study of the electromagnetic compatibility trial and flight test of aircraft[J]. Electronic Science and Technology,2011,24(2): 66-69. (in Chinese doi: 10.3969/j.issn.1007-7820.2011.02.022

    YANG Jian, ZHANG Peng. Study of the electromagnetic compatibility trial and flight test of aircraft[J]. Electronic Science and Technology, 2011, 24(2): 66-69. (in Chinese) doi: 10.3969/j.issn.1007-7820.2011.02.022
    [2] 王春,宋文武,潘涵. 固定翼飞机静电分布及电容求解[J]. 河北大学学报(自然科学版),2008,28(5): 490-493. WANG Chun,SONG Wenwu,PAN Han. Investigation on electrostatic charge distribution and capacitance solving of fixed wing aircraft[J]. Journal of Hebei University (Natural Science Edition),2008,28(5): 490-493. (in Chinese

    WANG Chun, SONG Wenwu, PAN Han. Investigation on electrostatic charge distribution and capacitance solving of fixed wing aircraft[J]. Journal of Hebei University (Natural Science Edition), 2008, 28(5): 490-493. (in Chinese)
    [3] 刘尚合,孙国至. 复杂电磁环境内涵及效应分析[J]. 装备指挥技术学院学报,2008,19(1): 1-5. LIU Shanghe,SUN Guozhi. Analysis of the concept and effects of complex electromagnetic environment[J]. Journal of the Academy of Equipment Command & Technology,2008,19(1): 1-5. (in Chinese

    LIU Shanghe, SUN Guozhi. Analysis of the concept and effects of complex electromagnetic environment[J]. Journal of the Academy of Equipment Command & Technology, 2008, 19(1): 1-5. (in Chinese)
    [4] 罗强. 飞机沉积静电电荷分布的研究和应用[D]. 西安: 西安石油大学,2018. LUO Qiang. Study and application of precipitation electrostatic charge distribution on aircraft[D]. Xi’an: Xi’an Shiyou University,2018. (in Chinese

    LUO Qiang. Study and application of precipitation electrostatic charge distribution on aircraft[D]. Xi’an: Xi’an Shiyou University, 2018. (in Chinese)
    [5] 张靖,司晓亮,仇善良,等. 飞机静电放电刷静电放电特性的试验研究[J]. 合肥工业大学学报(自然科学版),2018,41(1): 40-44,70. ZHANG Jing,SI Xiaoliang,QIU Shanliang,et al. Test research on electrostatic discharging characteristic of aircraft static discharger[J]. Journal of Hefei University of Technology (Natural Science),2018,41(1): 40-44,70. (in Chinese

    ZHANG Jing, SI Xiaoliang, QIU Shanliang, et al. Test research on electrostatic discharging characteristic of aircraft static discharger[J]. Journal of Hefei University of Technology (Natural Science), 2018, 41(1): 40-44, 70. (in Chinese)
    [6] 石国德. 300 kV飞机静电放电试验方法研究[D]. 沈阳: 沈阳航空航天大学,2013. SHI Guode. The study of test method in 300 kV aircraft electrostatic discharge[D]. Shenyang: Shenyang Aerospace University,2013. (in Chinese

    SHI Guode. The study of test method in 300 kV aircraft electrostatic discharge[D]. Shenyang: Shenyang Aerospace University, 2013. (in Chinese)
    [7] 王立新. MIL-D-9129B飞机静电放电器通用规范[J]. 航空标准化,1980(4): 38-41. WANG Lixin. General specification for MIL-D-9129B aircraft electrostatic discharger[J]. Aeronautic Standardization & Quality,1980(4): 38-41. (in Chinese

    WANG Lixin. General specification for MIL-D-9129B aircraft electrostatic discharger[J]. Aeronautic Standardization & Quality, 1980(4): 38-41. (in Chinese)
    [8] 任明,夏昌杰,陈荣发,等. 局部放电多光谱比值特征分析方法[J]. 中国电机工程学报,2023,43(2): 809-819. REN Ming,XIA Changjie,CHEN Rongfa,et al. Multispectral ratio characteristics analysis of partial discharge[J]. Proceedings of the CSEE,2023,43(2): 809-819. (in Chinese

    REN Ming, XIA Changjie, CHEN Rongfa, et al. Multispectral ratio characteristics analysis of partial discharge[J]. Proceedings of the CSEE, 2023, 43(2): 809-819. (in Chinese)
    [9] 刘浩,刘尚合,魏明,等. 高空低气压电晕放电特性模拟试验研究[J]. 高电压技术,2015,41(5): 1704-1708. LIU Hao,LIU Shanghe,WEI Ming,et al. Research of corona discharge characteristics for low pressure at high altitude based on simulation experiments[J]. High Voltage Engineering,2015,41(5): 1704-1708. (in Chinese

    LIU Hao, LIU Shanghe, WEI Ming, et al. Research of corona discharge characteristics for low pressure at high altitude based on simulation experiments[J]. High Voltage Engineering, 2015, 41(5): 1704-1708. (in Chinese)
    [10] ILLINGWORTH A J,MARSH S J. Static charging of aircraft by collisions with ice crystals[J]. Revue De Physique Appliquée,1986,21(12): 803-808.
    [11] REVEL I,AKOUN G,SRITHAMMAVANH V,et al. Scalling of static dischargers on electric field modelling[R]. Seattle,US: Conference on Lightning and Static Electricity,2005.
    [12] 郑会志,胡小峰,杜照恒,等. 飞行器表面材料沉积静电成因分析及模拟试验[J]. 高电压技术,2011,37(10): 2612-2616. ZHENG Huizhi,HU Xiaofeng,DU Zhaoheng,et al. Primary analysis and simulation test on precipitation static of aerial vehicle surface material[J]. High Voltage Engineering,2011,37(10): 2612-2616. (in Chinese

    ZHENG Huizhi, HU Xiaofeng, DU Zhaoheng, et al. Primary analysis and simulation test on precipitation static of aerial vehicle surface material[J]. High Voltage Engineering, 2011, 37(10): 2612-2616. (in Chinese)
    [13] 翟维鹏,胡小锋,周帅,等. 碰撞速度和碰撞角度对典型材料起电影响[J]. 兵工学报,2023,44(5): 1358-1364. ZHAI Weipeng,HU Xiaofeng,ZHOU Shuai,et al. Impact of collision speeds and angles on electrification of typical materials[J]. Acta Armamentarii,2023,44(5): 1358-1364. (in Chinese

    ZHAI Weipeng, HU Xiaofeng, ZHOU Shuai, et al. Impact of collision speeds and angles on electrification of typical materials[J]. Acta Armamentarii, 2023, 44(5): 1358-1364. (in Chinese)
    [14] 方庆园,周江波,季启政,等. 飞行器表面沉积静电分布仿真[J]. 科学技术与工程,2021,21(8): 3006-3012. FANG Qingyuan,ZHOU Jiangbo,JI Qizheng,et al. Simulation on distribution of precipitation static on aircraft[J]. Science Technology and Engineering,2021,21(8): 3006-3012. (in Chinese doi: 10.3969/j.issn.1671-1815.2021.08.003

    FANG Qingyuan, ZHOU Jiangbo, JI Qizheng, et al. Simulation on distribution of precipitation static on aircraft[J]. Science Technology and Engineering, 2021, 21(8): 3006-3012. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.08.003
    [15] 张力,张家俊,李鑫宇,等. 导弹静电放电效应及其防护装置应用研究[J]. 现代防御技术,2021,49(1): 40-46. ZHANG Li,ZHANG Jiajun,LI Xinyu,et al. Researh on electrostatic discharge effect of missile and application of protective device for it[J]. Modern Defence Technology,2021,49(1): 40-46. (in Chinese doi: 10.3969/j.issn.1009-086x.2021.01.006

    ZHANG Li, ZHANG Jiajun, LI Xinyu, et al. Researh on electrostatic discharge effect of missile and application of protective device for it[J]. Modern Defence Technology, 2021, 49(1): 40-46. (in Chinese) doi: 10.3969/j.issn.1009-086x.2021.01.006
    [16] 段泽民,仇善良,司晓亮,等. 飞机静电放电器静电泄放性能的影响参数[J]. 高电压技术,2016,42(5): 1356-1362. DUAN Zemin,QIU Shanliang,SI Xiaoliang,et al. Parameters influencing the electrostatic discharge performance of aircraft static dischargers[J]. High Voltage Engineering,2016,42(5): 1356-1362. (in Chinese

    DUAN Zemin, QIU Shanliang, SI Xiaoliang, et al. Parameters influencing the electrostatic discharge performance of aircraft static dischargers[J]. High Voltage Engineering, 2016, 42(5): 1356-1362. (in Chinese)
    [17] 袁海环. 复合材料飞机沉积静电防护研究[J]. 科技创新导报,2019,16(8): 9-12. YUAN Haihuan. Study on electrostatic protection of composite aircraft deposition[J]. Science and Technology Innovation Herald,2019,16(8): 9-12. (in Chinese

    YUAN Haihuan. Study on electrostatic protection of composite aircraft deposition[J]. Science and Technology Innovation Herald, 2019, 16(8): 9-12. (in Chinese)
    [18] AE-2 Lightning Committee. Aircraft Precipitation Static Certification: SAE ARP 5672[S]. Warrendale,US: SAE International,2023.
    [19] 张程,夏智勋,马超,等. 基于 k- ω SST模型的同心筒发射装置流场数值模拟[J]. 航空动力学报,2019,34(11): 2331-2338. ZHANG Cheng,XIA Zhixun,MA Chao,et al. Numerical simulation of flow field of concentric canister launcher based on k- ω SST turbulence model[J]. Journal of Aerospace Power,2019,34(11): 2331-2338. (in Chinese

    ZHANG Cheng, XIA Zhixun, MA Chao, et al. Numerical simulation of flow field of concentric canister launcher based on k-ω SST turbulence model[J]. Journal of Aerospace Power, 2019, 34(11): 2331-2338. (in Chinese)
    [20] 刘通,蔡晋生,屈崑. 壁面粗糙度湍流扩展模型及流动数值模拟[J]. 航空动力学报,2018,33(8): 1981-1989. LIU Tong,CAI Jinsheng,QU Kun. Roughness for wall turbulence extension model and flow numerical simulation[J]. Journal of Aerospace Power,2018,33(8): 1981-1989. (in Chinese

    LIU Tong, CAI Jinsheng, QU Kun. Roughness for wall turbulence extension model and flow numerical simulation[J]. Journal of Aerospace Power, 2018, 33(8): 1981-1989. (in Chinese)
    [21] 张仪,王晓东,梁俊宇,等. 改进S-A湍流模型对横向射流的CFD模拟[J]. 航空动力学报,2017,32(11): 2761-2768. ZHANG Yi,WANG Xiaodong,LIANG Junyu,et al. CFD simulations of jet in cross-flow with modified S-A turbulence model[J]. Journal of Aerospace Power,2017,32(11): 2761-2768. (in Chinese

    ZHANG Yi, WANG Xiaodong, LIANG Junyu, et al. CFD simulations of jet in cross-flow with modified S-A turbulence model[J]. Journal of Aerospace Power, 2017, 32(11): 2761-2768. (in Chinese)
    [22] 曾宇,汪洪波,孙明波,等. SST湍流模型改进研究综述[J]. 航空学报,2023,44(9): 027411. ZENG Yu,WANG Hongbo,SUN Mingbo,et al. SST turbulence model improvements: review[J]. Acta Aeronautica et Astronautica Sinica,2023,44(9): 027411. (in Chinese

    ZENG Yu, WANG Hongbo, SUN Mingbo, et al. SST turbulence model improvements: review[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 027411. (in Chinese)
    [23] 中华人民共和国航空工业部. 飞行大气参数: HB6127-86[S]. 北京: 航空工业出版社,1986.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  11
  • HTML浏览量:  13
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回