留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属海绵阻力特性数值计算

张丽芬 葛鑫 胡兴龙 韦瑞荣 余邦拓 刘振侠

张丽芬, 葛鑫, 胡兴龙, 等. 金属海绵阻力特性数值计算[J]. 航空动力学报, 2024, 39(10):20220638 doi: 10.13224/j.cnki.jasp.20220638
引用本文: 张丽芬, 葛鑫, 胡兴龙, 等. 金属海绵阻力特性数值计算[J]. 航空动力学报, 2024, 39(10):20220638 doi: 10.13224/j.cnki.jasp.20220638
ZHANG Lifen, GE Xin, HU Xinglong, et al. Numerical calculation on resistance characteristics of metal foam[J]. Journal of Aerospace Power, 2024, 39(10):20220638 doi: 10.13224/j.cnki.jasp.20220638
Citation: ZHANG Lifen, GE Xin, HU Xinglong, et al. Numerical calculation on resistance characteristics of metal foam[J]. Journal of Aerospace Power, 2024, 39(10):20220638 doi: 10.13224/j.cnki.jasp.20220638

金属海绵阻力特性数值计算

doi: 10.13224/j.cnki.jasp.20220638
详细信息
    作者简介:

    张丽芬(1980-),女,副教授、硕士生导师,博士,主要从事航空发动机通风系统部件流动、换热以及金属海绵离心通风器的研究

  • 中图分类号: V233.4

Numerical calculation on resistance characteristics of metal foam

  • 摘要:

    采用体心立方结构和Kelvin结构重建金属海绵的胞体结构,分析比较了单相流和两相流下金属海绵内部阻力、不同切角时金属海绵内部阻力。结果表明:①体心立方结构能够达到的孔隙率e的范围为68.01% < e < 98.01%;而Kelvin结构能够达到的孔隙率的范围为72.1% < e < 98.7%;②油滴质量分数为9.1%、进口速度小于20 m/s时,两相流计算的压降比单相流计算的压降高约5%;③切向角为30°的Kelvin结构金属海绵与实际金属海绵的阻力特性一致性较高,能够较好地表征金属海绵的阻力特性。

     

  • 图 1  体心立方结构胞体

    Figure 1.  Body-centered cubic structure cell

    图 2  金属海绵简化模型

    Figure 2.  Simplified model of metal foam

    图 3  Kelvin结构

    Figure 3.  Kelvin structure

    图 4  Kelvin结构胞体

    Figure 4.  Kelvin structure cell

    图 5  Kelvin结构胞体阵列

    Figure 5.  Kelvin structure cell array

    图 6  金属海绵模型切取方向示意图

    Figure 6.  Sketch of cutting direction of metal foam model

    图 7  不同切角下体心立方结构

    Figure 7.  Body-centered cubic structure at different cutting angles

    图 8  不同切角下Kelvin结构

    Figure 8.  Kelvin structure at different cutting angles

    图 9  数值模拟计算域

    Figure 9.  Computational domain of numerical simulation

    图 10  计算域网格划分

    Figure 10.  Grid of computational domain

    图 11  金属海绵模型内两相流与单相流阻力对比

    Figure 11.  Two-phase flow versus single-phase flow resistance in metal foam model

    图 12  体心立方结构金属海绵压力云图与速度云图

    Figure 12.  Pressure and velocity contours of metal foam with body-centered cubic structure

    图 13  Kelvin结构金属海绵压力云图与速度云图

    Figure 13.  Pressure and velocity contours of metal foam with Kelvin structure

    图 14  不同切角金属海绵的阻力

    Figure 14.  Resistance of metal foam with different cutting angles

    图 15  Kelvin结构数值计算结果与实验值对比

    Figure 15.  Comparison of numerical results of Kelvin structure with experiment

    图 16  体心立方结构数值计算结果与实验值对比

    Figure 16.  Comparison of numerical results of body-centered cubic structure with experiment

    表  1  空气质量流量与油滴质量流量

    Table  1.   Air mass flow rate and lubricant mass flow rate

    入口速度/
    (m/s)
    入口表面积/
    10−6 m2
    空气质量流量/
    10−5 (kg/s)
    油滴质量流量/
    10−6 (kg/s)
    6 9 6.966 6.966
    7 9 8.127 8.127
    10 9 11.6 11.6
    15 9 17.4 17.4
    20 9 23.2 23.2
    下载: 导出CSV

    表  2  文献[26]实验的金属海绵参数

    Table  2.   Experimental metal foam parameters in literature [26]

    PPI 体积分数/% 密度/(g/m3
    30 9.8 0.450
    20 6.6 0.410
    下载: 导出CSV
  • [1] 姬科举. 开孔泡沫金属的功能化应用基础研究[D]. 南京: 南京航空航天大学,2015. JI Keju. Basic research on functional application of open-cell foam metal[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2015. (in Chinese

    JI Keju. Basic research on functional application of open-cell foam metal[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [2] BANHART J. Manufacture,characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science,2001,46(6): 559-632. doi: 10.1016/S0079-6425(00)00002-5
    [3] ERGUN S,ORNING A A. Fluid flow through randomly packed columns and fluidized beds[J]. Industrial & Engineering Chemistry,1949,41(6): 1179-1184.
    [4] INNOCENTINI M D M,SALVINI V R,MACEDO A,et al. Prediction of ceramic foams permeability using Ergun’s equation[J]. Materials Research,1999,2(4): 283-289. doi: 10.1590/S1516-14391999000400008
    [5] RICHARDSON J T,PENG Y,REMUE D. Properties of ceramic foam catalyst supports: pressure drop[J]. Applied Catalysis A: General,2000,204(1): 19-32. doi: 10.1016/S0926-860X(00)00508-1
    [6] MOREIRA E A,INNOCENTINI M D M,COURY J R. Permeability of ceramic foams to compressible and incompressible flow[J]. Journal of the European Ceramic Society,2004,24(10/11): 3209-3218.
    [7] TADRIST L,MISCEVIC M,RAHLI O,et al. About the use of fibrous materials in compact heat exchangers[J]. Experimental Thermal and Fluid Science,2004,28(2/3): 193-199.
    [8] DUKHAN N. Correlations for the pressure drop for flow through metal foam[J]. Experiments in Fluids,2006,41(4): 665-672. doi: 10.1007/s00348-006-0194-x
    [9] MANCIN S,ZILIO C,CAVALLINI A,et al. Pressure drop during air flow in aluminum foams[J]. International Journal of Heat and Mass Transfer,2010,53(15/16): 3121-3130.
    [10] TRIFALE N,NAUMAN E,YAZAWA K. Mechanical characterization of metal foams for contact resistance in thermal interface applications[R]. San Francisco,US: ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems,2015.
    [11] KRISHNAN S,MURTHY J Y,GARIMELLA S V. Direct simulation of transport in open-cell metal foam[J]. Journal of Heat Transfer,2006,128(8): 793-799. doi: 10.1115/1.2227038
    [12] DE CARVALHO T P,MORVAN H P,HARGREAVES D,et al. Experimental and tomography-based CFD investigations of the flow in open cell metal foams with application to aero engine separators[R]. ASME GT2015-43509,2015.
    [13] 刘晓丹,冯妍卉,杨雪飞,等. 泡沫金属的热分析[J]. 北京科技大学学报,2009,31(7): 895-900. LIU Xiaodan,FENG Yanhui,YANG Xuefei,et al. Thermal analysis on metal foams[J]. Journal of University of Science and Technology Beijing,2009,31(7): 895-900. (in Chinese

    LIU Xiaodan, FENG Yanhui, YANG Xuefei, et al. Thermal analysis on metal foams[J]. Journal of University of Science and Technology Beijing, 2009, 31(7): 895-900. (in Chinese)
    [14] 左孝青,孙加林. 泡沫金属的性能及应用研究进展[J]. 昆明理工大学学报(理工版),2005,30(1): 13-17. ZUO Xiaoqing,SUN Jialin. Properties and applications of foamed metals[J]. Journal of Kunming University of Science and Technology,2005,30(1): 13-17. (in Chinese

    ZUO Xiaoqing, SUN Jialin. Properties and applications of foamed metals[J]. Journal of Kunming University of Science and Technology, 2005, 30(1): 13-17. (in Chinese)
    [15] 赵红柳,孙明瑞,姜楠,等. S型泡沫金属管翅式换热器的设计与实验研究[J]. 航空动力学报,2023,38(4): 840-849. ZHAO Hongliu,SUN Mingrui,JIANG Nan,et al. Design and experimental study of S-type foam metal tube-fin heat exchanger[J]. Journal of Aerospace Power,2023,38(4): 840-849. (in Chinese

    ZHAO Hongliu, SUN Mingrui, JIANG Nan, et al. Design and experimental study of S-type foam metal tube-fin heat exchanger[J]. Journal of Aerospace Power, 2023, 38(4): 840-849. (in Chinese)
    [16] 李婧,孙晓霞,马兴龙,等. 开孔泡沫金属传热和流动特性[J/OL]. 兵工学报,2022. (2022-08-12). https://kns.cnki.net/kcms/detail/11.2176.TJ.20220811.1557.008.html. LI Jing,SUN Xiaoxia,MA Xinglong,et al. Study on heat transfer and flow characteristics of open-cell metal foams[J/OL]. Acta Armamentarii,2022. (2022-08-12). https://kns.cnki.net/kcms/detail/11.2176.TJ.20220811.1557.008.html. (in Chinese

    LI Jing, SUN Xiaoxia, MA Xinglong, et al. Study on heat transfer and flow characteristics of open-cell metal foams[J/OL]. Acta Armamentarii, 2022. (2022-08-12). https://kns.cnki.net/kcms/detail/11.2176.TJ.20220811.1557.008.html. (in Chinese)
    [17] 刘东洋,顾令东,闵敬春. 泡沫金属内空气流动换热特性数值研究[J]. 工程热物理学报,2022,43(7): 1929-1934. LIU Dongyang,GU Lingdong,MIN Jingchun. Numerical study on air flow and heat transfer in foam metal[J]. Journal of Engineering Thermophysics,2022,43(7): 1929-1934. (in Chinese

    LIU Dongyang, GU Lingdong, MIN Jingchun. Numerical study on air flow and heat transfer in foam metal[J]. Journal of Engineering Thermophysics, 2022, 43(7): 1929-1934. (in Chinese)
    [18] BOOMSMA K,POULIKAKOS D,VENTIKOS Y. Simulations of flow through open cell metal foams using an idealized periodic cell structure[J]. International Journal of Heat and Fluid Flow,2003,24(6): 825-834. doi: 10.1016/j.ijheatfluidflow.2003.08.002
    [19] KUMAR P,TOPIN F. Micro-structural impact of different strut shapes and porosity on hydraulic properties of kelvin-like metal foams[J]. Transport in Porous Media,2014,105(1): 57-81. doi: 10.1007/s11242-014-0358-8
    [20] NIE Zhengwei,LIN Yuyi,TONG Qingbin. Modeling structures of open cell foams[J]. Computational Materials Science,2017,131: 160-169. doi: 10.1016/j.commatsci.2017.01.029
    [21] BOCK J,JACOBI A M. Geometric classification of open-cell metal foams using X-ray micro-computed tomography[J]. Materials Characterization,2013,75: 35-43. doi: 10.1016/j.matchar.2012.10.001
    [22] YU Qijun,THOMPSON B E,STRAATMAN A G. A unit cube-based model for heat transfer and fluid flow in porous carbon foam[J]. Journal of Heat Transfer,2006,128(4): 352-360. doi: 10.1115/1.2165203
    [23] WEAIRE D,PHELAN R. A counter-example to Kelvin’s conjecture on minimal surfaces[J]. Philosophical Magazine Letters,1994,69(2): 107-110. doi: 10.1080/09500839408241577
    [24] SIR THOMSON W. On the division of space with minimum partitional area[J]. Acta Mathematica,1887,11(1): 121-134.
    [25] 齐敏菊,高光发. 开孔泡沫材料随机化Kelvin微结构模型建立与应用[J]. 系统仿真学报,2015,27(2): 262-269. QI Minju,GAO Guangfa. Modeling random kelvin cell micro-structure for open-cell foam and its application on compression response of open-cell aluminum foam[J]. Journal of System Simulation,2015,27(2): 262-269. (in Chinese

    QI Minju, GAO Guangfa. Modeling random kelvin cell micro-structure for open-cell foam and its application on compression response of open-cell aluminum foam[J]. Journal of System Simulation, 2015, 27(2): 262-269. (in Chinese)
    [26] KOLTSAKIS G C,KATSAOUNIS D K,MARKOMANOLAKIS I A,et al. Design and application of catalyzed metal foam particulate filters[R]. Warrendale,US: SAE International,2006.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  33
  • HTML浏览量:  28
  • PDF量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 网络出版日期:  2024-03-07

目录

    /

    返回文章
    返回