Numerical calculation on resistance characteristics of metal foam
-
摘要:
采用体心立方结构和Kelvin结构重建金属海绵的胞体结构,分析比较了单相流和两相流下金属海绵内部阻力、不同切角时金属海绵内部阻力。结果表明:①体心立方结构能够达到的孔隙率
e 的范围为68.01% <e < 98.01%;而Kelvin结构能够达到的孔隙率的范围为72.1% <e < 98.7%;②油滴质量分数为9.1%、进口速度小于20 m/s时,两相流计算的压降比单相流计算的压降高约5%;③切向角为30°的Kelvin结构金属海绵与实际金属海绵的阻力特性一致性较高,能够较好地表征金属海绵的阻力特性。Abstract:The cell structure of the metal foam was reconstructed using the body-centered cubic structure and Kelvin structure, respectively, and the internal resistances of the metal foam under single-phase flow and two-phase flow at different cutting angles were analyzed and compared. The results showed that: 1) the body-centered cubic structure can achieve a porosity
e range of 68.01% <e < 98.01%; while the Kelvin structure can achieve a porosity range of 72.1% <e < 98.7%; 2)the pressure drop calculated by two-phase flow was about 5% higher than that calculated by single-phase flow when the mass fraction of oil droplets was 9.1% and the inlet velocity was less than 20 m/s; 3) the resistance characteristics of the Kelvin structure metal foam with a cutting angle of 30° were in high agreement with those of the actual metal foam, and can better characterize the resistance characteristics of the metal foam. -
表 1 空气质量流量与油滴质量流量
Table 1. Air mass flow rate and lubricant mass flow rate
入口速度/
(m/s)入口表面积/
10−6 m2空气质量流量/
10−5 (kg/s)油滴质量流量/
10−6 (kg/s)6 9 6.966 6.966 7 9 8.127 8.127 10 9 11.6 11.6 15 9 17.4 17.4 20 9 23.2 23.2 -
[1] 姬科举. 开孔泡沫金属的功能化应用基础研究[D]. 南京: 南京航空航天大学,2015. JI Keju. Basic research on functional application of open-cell foam metal[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2015. (in ChineseJI Keju. Basic research on functional application of open-cell foam metal[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese) [2] BANHART J. Manufacture,characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science,2001,46(6): 559-632. doi: 10.1016/S0079-6425(00)00002-5 [3] ERGUN S,ORNING A A. Fluid flow through randomly packed columns and fluidized beds[J]. Industrial & Engineering Chemistry,1949,41(6): 1179-1184. [4] INNOCENTINI M D M,SALVINI V R,MACEDO A,et al. Prediction of ceramic foams permeability using Ergun’s equation[J]. Materials Research,1999,2(4): 283-289. doi: 10.1590/S1516-14391999000400008 [5] RICHARDSON J T,PENG Y,REMUE D. Properties of ceramic foam catalyst supports: pressure drop[J]. Applied Catalysis A: General,2000,204(1): 19-32. doi: 10.1016/S0926-860X(00)00508-1 [6] MOREIRA E A,INNOCENTINI M D M,COURY J R. Permeability of ceramic foams to compressible and incompressible flow[J]. Journal of the European Ceramic Society,2004,24(10/11): 3209-3218. [7] TADRIST L,MISCEVIC M,RAHLI O,et al. About the use of fibrous materials in compact heat exchangers[J]. Experimental Thermal and Fluid Science,2004,28(2/3): 193-199. [8] DUKHAN N. Correlations for the pressure drop for flow through metal foam[J]. Experiments in Fluids,2006,41(4): 665-672. doi: 10.1007/s00348-006-0194-x [9] MANCIN S,ZILIO C,CAVALLINI A,et al. Pressure drop during air flow in aluminum foams[J]. International Journal of Heat and Mass Transfer,2010,53(15/16): 3121-3130. [10] TRIFALE N,NAUMAN E,YAZAWA K. Mechanical characterization of metal foams for contact resistance in thermal interface applications[R]. San Francisco,US: ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems,2015. [11] KRISHNAN S,MURTHY J Y,GARIMELLA S V. Direct simulation of transport in open-cell metal foam[J]. Journal of Heat Transfer,2006,128(8): 793-799. doi: 10.1115/1.2227038 [12] DE CARVALHO T P,MORVAN H P,HARGREAVES D,et al. Experimental and tomography-based CFD investigations of the flow in open cell metal foams with application to aero engine separators[R]. ASME GT2015-43509,2015. [13] 刘晓丹,冯妍卉,杨雪飞,等. 泡沫金属的热分析[J]. 北京科技大学学报,2009,31(7): 895-900. LIU Xiaodan,FENG Yanhui,YANG Xuefei,et al. Thermal analysis on metal foams[J]. Journal of University of Science and Technology Beijing,2009,31(7): 895-900. (in ChineseLIU Xiaodan, FENG Yanhui, YANG Xuefei, et al. Thermal analysis on metal foams[J]. Journal of University of Science and Technology Beijing, 2009, 31(7): 895-900. (in Chinese) [14] 左孝青,孙加林. 泡沫金属的性能及应用研究进展[J]. 昆明理工大学学报(理工版),2005,30(1): 13-17. ZUO Xiaoqing,SUN Jialin. Properties and applications of foamed metals[J]. Journal of Kunming University of Science and Technology,2005,30(1): 13-17. (in ChineseZUO Xiaoqing, SUN Jialin. Properties and applications of foamed metals[J]. Journal of Kunming University of Science and Technology, 2005, 30(1): 13-17. (in Chinese) [15] 赵红柳,孙明瑞,姜楠,等. S型泡沫金属管翅式换热器的设计与实验研究[J]. 航空动力学报,2023,38(4): 840-849. ZHAO Hongliu,SUN Mingrui,JIANG Nan,et al. Design and experimental study of S-type foam metal tube-fin heat exchanger[J]. Journal of Aerospace Power,2023,38(4): 840-849. (in ChineseZHAO Hongliu, SUN Mingrui, JIANG Nan, et al. Design and experimental study of S-type foam metal tube-fin heat exchanger[J]. Journal of Aerospace Power, 2023, 38(4): 840-849. (in Chinese) [16] 李婧,孙晓霞,马兴龙,等. 开孔泡沫金属传热和流动特性[J]. 兵工学报,2024,45(1):122-130. LI Jing,SUN Xiaoxia,MA Xinglong,et al. Study on heat transfer and flow characteristics of open-cell metal foams[J]. Acta Armamentarii,2024,45(1):122-130. (in ChineseLI Jing, SUN Xiaoxia, MA Xinglong, et al. Study on heat transfer and flow characteristics of open-cell metal foams[J]. Acta Armamentarii, 2024, 45(1): 122-130. (in Chinese) [17] 刘东洋,顾令东,闵敬春. 泡沫金属内空气流动换热特性数值研究[J]. 工程热物理学报,2022,43(7): 1929-1934. LIU Dongyang,GU Lingdong,MIN Jingchun. Numerical study on air flow and heat transfer in foam metal[J]. Journal of Engineering Thermophysics,2022,43(7): 1929-1934. (in ChineseLIU Dongyang, GU Lingdong, MIN Jingchun. Numerical study on air flow and heat transfer in foam metal[J]. Journal of Engineering Thermophysics, 2022, 43(7): 1929-1934. (in Chinese) [18] BOOMSMA K,POULIKAKOS D,VENTIKOS Y. Simulations of flow through open cell metal foams using an idealized periodic cell structure[J]. International Journal of Heat and Fluid Flow,2003,24(6): 825-834. doi: 10.1016/j.ijheatfluidflow.2003.08.002 [19] KUMAR P,TOPIN F. Micro-structural impact of different strut shapes and porosity on hydraulic properties of kelvin-like metal foams[J]. Transport in Porous Media,2014,105(1): 57-81. doi: 10.1007/s11242-014-0358-8 [20] NIE Zhengwei,LIN Yuyi,TONG Qingbin. Modeling structures of open cell foams[J]. Computational Materials Science,2017,131: 160-169. doi: 10.1016/j.commatsci.2017.01.029 [21] BOCK J,JACOBI A M. Geometric classification of open-cell metal foams using X-ray micro-computed tomography[J]. Materials Characterization,2013,75: 35-43. doi: 10.1016/j.matchar.2012.10.001 [22] YU Qijun,THOMPSON B E,STRAATMAN A G. A unit cube-based model for heat transfer and fluid flow in porous carbon foam[J]. Journal of Heat Transfer,2006,128(4): 352-360. doi: 10.1115/1.2165203 [23] WEAIRE D,PHELAN R. A counter-example to Kelvin’s conjecture on minimal surfaces[J]. Philosophical Magazine Letters,1994,69(2): 107-110. doi: 10.1080/09500839408241577 [24] SIR THOMSON W. On the division of space with minimum partitional area[J]. Acta Mathematica,1887,11(1): 121-134. [25] 齐敏菊,高光发. 开孔泡沫材料随机化Kelvin微结构模型建立与应用[J]. 系统仿真学报,2015,27(2): 262-269. QI Minju,GAO Guangfa. Modeling random kelvin cell micro-structure for open-cell foam and its application on compression response of open-cell aluminum foam[J]. Journal of System Simulation,2015,27(2): 262-269. (in ChineseQI Minju, GAO Guangfa. Modeling random kelvin cell micro-structure for open-cell foam and its application on compression response of open-cell aluminum foam[J]. Journal of System Simulation, 2015, 27(2): 262-269. (in Chinese) [26] KOLTSAKIS G C,KATSAOUNIS D K,MARKOMANOLAKIS I A,et al. Design and application of catalyzed metal foam particulate filters[R]. Warrendale,US: SAE International,2006. -