留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舰艉流场主动控制对直升机配平操纵的影响

叶毅 陈仁良

叶毅, 陈仁良. 舰艉流场主动控制对直升机配平操纵的影响[J]. 航空动力学报, 2024, 39(9):20220646 doi: 10.13224/j.cnki.jasp.20220646
引用本文: 叶毅, 陈仁良. 舰艉流场主动控制对直升机配平操纵的影响[J]. 航空动力学报, 2024, 39(9):20220646 doi: 10.13224/j.cnki.jasp.20220646
YE Yi, CHEN Renliang. Effect of ship airwake active control on helicopter trimmed controls[J]. Journal of Aerospace Power, 2024, 39(9):20220646 doi: 10.13224/j.cnki.jasp.20220646
Citation: YE Yi, CHEN Renliang. Effect of ship airwake active control on helicopter trimmed controls[J]. Journal of Aerospace Power, 2024, 39(9):20220646 doi: 10.13224/j.cnki.jasp.20220646

舰艉流场主动控制对直升机配平操纵的影响

doi: 10.13224/j.cnki.jasp.20220646
基金项目: 国家自然科学基金(11672128); 江苏高校优秀学科建设工程资助项目
详细信息
    作者简介:

    叶毅(1992-),男,博士生,研究方向为直升机飞行力学与控制

    通讯作者:

    陈仁良(1963-),男,教授、博士生导师,博士,研究方向为直升机多学科优化设计、直升机飞行力学与控制、直升机空气动力学。E-mail:crlae@nuaa.edu.cn

  • 中图分类号: V212.4

Effect of ship airwake active control on helicopter trimmed controls

  • 摘要:

    为研究舰艉流场对直升机配平操纵的影响,采用了数值模拟和直升机飞行动力学模型相结合的方法,通过computational fluid dynamics(CFD)数值模拟得到舰艉流场,并探究加入流场主动控制下的舰艉流场特征,同时考虑舰艉流场对直升机的影响,建立耦合的直升机舰面起降飞行动力学模型。计算得到直升机在有无艉流下相对悬停配平结果,并进一步对比分析有无流场主动控制对直升机配平操纵的影响。结果表明:舰艉流场对直升机起降影响显著,且相比较于无控制时舰艉流场对直升机操纵的干扰,增设吹气装置可有效抑制舰艉流场下洗,减小所需总距操纵杆量7.8%,脚蹬操纵量7.5%,改善其他相应操纵,减轻驾驶员操纵负荷。

     

  • 图 1  验证舰船网格细节示意图

    Figure 1.  Schematic of verified ship mesh details

    图 2  数值模拟结果与文献实验对比

    Figure 2.  Comparison of numerical simulation results with literature experiments

    图 3  某型舰船网格细节示意图

    Figure 3.  Schematic of a certain type of ship mesh details

    图 4  坐标系及分析区域示意图

    Figure 4.  Schematic of coordinate system and analysis areas

    图 5  原始舰船舰艉XZ平面流线(横向0 m)

    Figure 5.  XZ plane streamline of stern of original ship (horizontal 0 m)

    图 6  原始舰船舰艉XY平面流线(高度2.5 m)

    Figure 6.  XY plane streamline of stern of original ship (height 2.5 m)

    图 7  有无舰船艉流操纵量对比

    Figure 7.  Comparison of control variables with and without ship airwake

    图 8  吹气装置示意图

    Figure 8.  Schematic of blowing device

    图 9  主动控制XZ平面流线(横向0 m)

    Figure 9.  XZ plane streamline of active control (horizontal 0 m)

    图 10  主动控制XY平面流线(高度2.5 m)

    Figure 10.  XY plane streamline of active control (height 2.5 m)

    图 11  有无主动控制操纵量对比

    Figure 11.  Comparison of control variables with and without active control

  • [1] BARDERA-MORA R,GARCIA-MAGARIÑO A,RODRIGUEZ-SEVILLANO A,et al. Aerodynamic flow field above the flight deck of an aircraft carrier and its influence on the take-off performances[R]. AIAA2018-3006,2018.
    [2] REDDY K R,TOFFOLETTO R,JONES K R W. Numerical simulation of ship airwake[J]. Computers & Fluids,2000,29(4): 451-465.
    [3] POLSKY S,BRUNER C. Time-accurate computational simulations of an LHA ship airwake[R]. AIAA2000-4126,2000.
    [4] 郭佳豪,祝小平,周洲,等. 舰船空气流场数值模拟及特性分析[J]. 西北工业大学学报,2018,36(6): 1037-1044. GUO Jiahao,ZHU Xiaoping,ZHOU Zhou,et al. Numerical simulation and characteristic analysis of ship’s air flow field[J]. Journal of Northwestern Polytechnical University,2018,36(6): 1037-1044. (in Chinese doi: 10.1051/jnwpu/20183661037

    GUO Jiahao, ZHU Xiaoping, ZHOU Zhou, et al. Numerical simulation and characteristic analysis of ship’s air flow field[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1037-1044. (in Chinese) doi: 10.1051/jnwpu/20183661037
    [5] NACAKLI Y,LANDMAN D,DOANE S. Investigation of backward-facing-step flow field for dynamic interface application[J]. Journal of the American Helicopter Society,2012,57(3): 1-9.
    [6] DUY T N,HINO T,SUZUKI K. Numerical study on stern flow fields of ship hulls with different transom configurations[J]. Ocean Engineering,2017,129: 401-414. doi: 10.1016/j.oceaneng.2016.10.052
    [7] SHI Yongjie,HE Xiang,XU Yi,et al. Numerical study on flow control of ship airwake and rotor airload during helicopter shipboard landing[J]. Chinese Journal of Aeronautics,2019,32(2): 324-336. doi: 10.1016/j.cja.2018.12.020
    [8] FINDLAY D,GHEE T. Experimental investigation of ship airwake flow control for a US navy flight Ⅱ-a class destroyer (DDG)[R]. AIAA2006-3501,2006.
    [9] SHAFER D,GHEE T. Active and passive flow control over the flight deck of small naval vessels[R]. AIAA2005-5265,2005.
    [10] BARDERA-MORA R,CONESA A,LOZANO I. Simple frigate shape plasma flow control[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2016,230(14): 2693-2699.
    [11] SHI Yongjie,SU Dacheng,XU Guohua. Numerical investigation of the influence of passive/active flow control on ship/helicopter dynamic interface[J]. Aerospace Science and Technology,2020,106: 106205. doi: 10.1016/j.ast.2020.106205
    [12] 谭文渊,曹义华. 基于嵌套网格的舰载直升机流场仿真及风限图计算[J]. 航空动力学报,2020,35(10): 2166-2175. TAN Wenyuan,CAO Yihua. Simulation of flow field and calculation of safe operating envelope of shipborne helicopter based on chimera grid[J]. Journal of Aerospace Power,2020,35(10): 2166-2175. (in Chinese

    TAN Wenyuan, CAO Yihua. Simulation of flow field and calculation of safe operating envelope of shipborne helicopter based on chimera grid[J]. Journal of Aerospace Power, 2020, 35(10): 2166-2175. (in Chinese)
    [13] 王金玲,姜广文,杨妙升. 大气边界层对SFS2空气尾流特性的影响[J]. 舰船科学技术,2018,40(15): 37-40. WANG Jinling,JIANG Guangwen,YANG Miaosheng. Influence of ABL on SFS2 ship airwake[J]. Ship Science and Technology,2018,40(15): 37-40. (in Chinese

    WANG Jinling, JIANG Guangwen, YANG Miaosheng. Influence of ABL on SFS2 ship airwake[J]. Ship Science and Technology, 2018, 40(15): 37-40. (in Chinese)
    [14] SYMS G F. Numerical simulation of frigate airwakes[J]. International Journal of Computational Fluid Dynamics,2004,18(2): 199-207. doi: 10.1080/10618560310001634159
    [15] ZHANG Feng,XU H,BALL N. Numerical simulation of unsteady flow over SFS 2 ship model[R]. AIAA2009-81,2009.
    [16] 吉洪蕾,陈仁良,李攀. 耦合POD重构舰面流场的直升机舰面起降数值模拟[J]. 航空学报,2016,37(3): 771-779. JI Honglei,CHEN Renliang,LI Pan. Numerical simulation of a helicopter operating in a reconstructed ship airwake based on POD method[J]. Acta Aeronautica et Astronautica Sinica,2016,37(3): 771-779. (in Chinese

    JI Honglei, CHEN Renliang, LI Pan. Numerical simulation of a helicopter operating in a reconstructed ship airwake based on POD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 771-779. (in Chinese)
    [17] 李攀,陈仁良. 直升机急拉杆机动飞行仿真建模与验证[J]. 航空学报,2010,31(12): 2315-2323. LI Pan,CHEN Renliang. Formulation and validation of a helicopter model for pull-up maneuver simulation[J]. Acta Aeronautica et Astronautica Sinica,2010,31(12): 2315-2323. (in Chinese

    LI Pan, CHEN Renliang. Formulation and validation of a helicopter model for pull-up maneuver simulation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2315-2323. (in Chinese)
    [18] 吴文韬. 直升机舰面起降飞行特性及起降风限图研究[D]. 南京: 南京航空航天大学,2019. WU Wentao. Research on helicopter shipboard flight characteristics and wind-over-deck envelop[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2019. (in Chinese

    WU Wentao. Research on helicopter shipboard flight characteristics and wind-over-deck envelop[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. (in Chinese)
    [19] ARMALY B F,DURST F,PEREIRA J C F,et al. Experimental and theoretical investigation of backward-facing step flow[J]. Journal of Fluid Mechanics,1983,127: 473-496. doi: 10.1017/S0022112083002839
  • 加载中
图(11)
计量
  • 文章访问数:  77
  • HTML浏览量:  47
  • PDF量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回