留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机燃油箱惰化能力降级指标分析

吕旭飞 姚尚宏 杜明杰

吕旭飞, 姚尚宏, 杜明杰. 飞机燃油箱惰化能力降级指标分析[J]. 航空动力学报, 2023, 38(5):1067-1074 doi: 10.13224/j.cnki.jasp.20220648
引用本文: 吕旭飞, 姚尚宏, 杜明杰. 飞机燃油箱惰化能力降级指标分析[J]. 航空动力学报, 2023, 38(5):1067-1074 doi: 10.13224/j.cnki.jasp.20220648
LÜ Xufei, YAO Shanghong, DU Mingjie. Analysis of inerting index when inerting capability of aircraft fuel tank was degraded[J]. Journal of Aerospace Power, 2023, 38(5):1067-1074 doi: 10.13224/j.cnki.jasp.20220648
Citation: LÜ Xufei, YAO Shanghong, DU Mingjie. Analysis of inerting index when inerting capability of aircraft fuel tank was degraded[J]. Journal of Aerospace Power, 2023, 38(5):1067-1074 doi: 10.13224/j.cnki.jasp.20220648

飞机燃油箱惰化能力降级指标分析

doi: 10.13224/j.cnki.jasp.20220648
基金项目: 稳定支持基金(WD-2020-2-1)
详细信息
    作者简介:

    吕旭飞(1991-),男,工程师,硕士,主要研究方向为飞机燃油系统试飞

  • 中图分类号: V228.11

Analysis of inerting index when inerting capability of aircraft fuel tank was degraded

  • 摘要:

    为明确飞机燃油箱惰能力降级指标,从点燃试验的试验设施、试验结果及不同试验之间结果差异的原因3个方面总结和分析了燃油箱点燃试验的文献,根据文献分析结果将燃油箱的惰化能力分为四个等级,分析发现:试验设施差异、点燃标准不同是不同试验结果存在差异的主要原因;高能点火源试验在燃爆标准、试验影响因素和试验结果方面存在特殊性,其对燃油箱混气惰化能力要求更高;飞机燃油箱的惰化能力会随着混气中氧气浓度的增加而降低,不同燃油箱惰化状态下燃油箱的安全性也存在差别,这种惰化能力的降级同时需要考虑点火源和混气气压的影响。

     

  • 图 1  三元组分燃爆区域图

    Figure 1.  Diagram of three component ignition and detonation zones

    图 2  Jet A可燃性包线[10]

    Figure 2.  Jet A flammability envelope[10]

    图 3  Summer试验系统[11]

    Figure 3.  Summer’s test system[11]

    图 4  极限氧体积分数随温度变化[14]

    Figure 4.  Limiting oxygen volume fraction changed with temperature[14]

    图 5  极限氧体积分数随高度变化

    Figure 5.  Limiting oxygen volume fraction changed with altitude

    图 6  在30 mm HEI弹击时油箱压力变化

    Figure 6.  Pressures variation of fuel tank using the 30 mm HEI projectile attack

    图 7  30 mmHEI弹击时高压条件下氧体积分数影响

    Figure 7.  Effect of changing oxygen volume fraction when using the 30 mm HEI projectile attack under high pressure condition

    图 8  不同点火源点火的极限氧体积分数试验结果

    Figure 8.  Test results of limiting oxygen volume fraction for ignition by different ignition sources

    图 9  热表面点火试验结果[13]

    Figure 9.  Hot surface ignition test results[13]

    图 10  不同气相空间氧体积分数惰化能力分级

    Figure 10.  Classification of inerting ability of gaseous space in different oxygen volume fraction

    表  1  Tyson 30 mm弹击试验条件

    Table  1.   Tyson’s 30 mm projectile attack test conditions

    不同测试高度下压力/kPa试验时氧体积分数/%
    210(低)21, 15, 12, 9
    196(中)21, 12
    159(高)21, 12, 9
    下载: 导出CSV

    表  2  热表面和火花点火试验结果

    Table  2.   Test results of hot surface and spark ignition

    点火源
    类型
    油箱温度范围/℃试验结果
    缩比油箱全尺寸油箱
    表面温度无油空间温度不发生爆炸的
    极限氧体积分数/%
    不发生反应的
    极限氧体积分数/%
    氧体积分数/%结果
    热表面<260<1491812.521爆炸
    热表面>260>149≤17不确定9无反应
    火花<260<149141215爆炸
    火花>260>14910.49.99无反应
    下载: 导出CSV
  • [1] 中国民用航空局航空安全办公室. 中国民航航空安全报告(2013年) [R]. 北京: 中国民用航空局, 2014.
    [2] 孟昭蓉, 杨春生. 世界航空事故汇编[M]. 北京: 中国民用航空, 2002.
    [3] 张瑞华,刘卫华,刘春阳,等. 运输类飞机燃油箱可燃性适航符合性方法[J]. 航空动力学报,2020,35(5): 1099-1108. doi: 10.13224/j.cnki.jasp.2020.05.021

    ZHANG Ruihua,LIU Weihua,LIU Chunyang,et al. Flammability and air worthiness compliance method of fuel tank for transport aircraft[J]. Journal of Aerospace Power,2020,35(5): 1099-1108. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.05.021
    [4] Aviation Rulemaking Advisory Committee (ARAC). Fuel tank harmonization working group final report[R]. Washington DC: Federal Aviation Administration, ECfthegT1-1231998, 1998.
    [5] 王慧丹,舒振杰,徐鹏国. 机载燃油惰化技术及标准研究[J]. 航空科学技术,2015,26(5): 18-21.

    WANG Huidan,SHU Zhenjie,XU Pengguo. Research on technology and standards of onboard inert gas generation system[J]. Aeronautical Scinence & Technology,2015,26(5): 18-21. (in Chinese)
    [6] 冯诗愚,刘冠男,江荣杰,等. 飞机燃油箱机载惰化技术研究现状与发展趋势[J]. 航空动力学报,2021,36(3): 616-625. doi: 10.13224/j.cnki.jasp.2021.03.017

    FENG Shiyu,LIU Guannan,JIANG Rongjie,et al. Research status anf development trend of aircraft fuel tank on-board inerting technology[J]. Journal of Aerospace Power,2021,36(3): 616-625. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.03.017
    [7] 王震. 飞机燃油箱防爆及抑爆材料应用技术[J]. 航空科学技术,2002(3): 33-35. doi: 10.3969/j.issn.1007-5453.2002.03.010

    WANG Zhen. Explosion suppression for aircraft fuel tanks and application technology of suppression material[J]. Aeronautical Science and Technology,2002(3): 33-35. (in Chinese) doi: 10.3969/j.issn.1007-5453.2002.03.010
    [8] 童升华. 国产燃油理化性能与易燃性研究[D]. 南京: 南京航空航天大学, 2013.

    TONG Shenghua. Research on physicochemical characteristics & flammability of domestic fuels[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. (in Chinese)
    [9] 周鹏鹤,刘文怡,刘卫华. 飞机燃油箱惰化中样体积分数控制指标分析[J]. 航空动力学报,2020,35(9): 1856-1865.

    ZHOU Penghe,LIU Wenyi,LIU Weihua. Analysis on oxygen volume fraction control index in aircraft fuel tank inerting[J]. Journal of Aerospace Power,2020,35(9): 1856-1865. (in Chinese)
    [10] Fuel Flammability Task Group. A review of the flammability hazard of Jet A fuel vapor in civil transport aircraft fuel tanks[R]. Washington DC: Federal Aviation Administration, DOT/FAA/AR- 98/26, 2002.
    [11] SUMMER S M. Limiting oxygen concentration required to inert jet fuel vapor existing at reduced fuel tank pressures[R]. Washington DC: Federal Aviation Administration, DOT/FAA/AR-04/8, 2004.
    [12] TYSON J H, BARNES J F. The effectiveness of ullage nitrogen inerting systems against 30 mm high-explosive incendiary projectiles[R]. Washington DC: Naval Weapons Center, NWC TP-7129, 1991.
    [13] HILL R, JOHSON G R. Investigation of aircraft fuel tank explosions and nitrogen inerting requirements during ground fires[R]. Washington DC: Federal Aviation Administration, FAA Report RD-75-119, 1975.
    [14] ZINN S V. Inerted fuel tank oxygen concentration requirments[R]. Washington DC: Federal Aviation Administration, FAA Report RD-71-42, 1971.
    [15] OTT E E, LILLIE R. Influence of fuel slosh upon the effectiveness of nitrogen inerting for aircraft fuel tanks[R]. Washington DC: Air Force Aviation Propulsion Laboratory, AFAPL-TR-70-82, 1971.
    [16] STEWART P B, STARKMAN E S. Inerting condition for aircraft fuel tanks[R]. Washington DC: Wright Air Development Center, WADC Technical Report No.55-418, 1955.
    [17] ANDSON C L. Test and evalution of halon 1301 and nitrogen inerting against 23 mm HEI projectiles[R]. Washington DC: Air Force Aviation Propulsion Laboratory, AFFDL-TR-78-66, 1978.
    [18] NESTOR L. Investigation of turbine fuel flammability within aircraft fuel tanks[R]. Washington DC: Naval Air Propulsion Test Center, Final Report DS-67-7, 1967.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  94
  • HTML浏览量:  39
  • PDF量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-03
  • 网络出版日期:  2023-04-10

目录

    /

    返回文章
    返回