留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结冰风洞发动机进气模拟系统稳流量进气控制方法研究及应用

冉林 易贤 赵照 熊建军

冉林, 易贤, 赵照, 等. 结冰风洞发动机进气模拟系统稳流量进气控制方法研究及应用[J]. 航空动力学报, 2024, 39(9):20220673 doi: 10.13224/j.cnki.jasp.20220673
引用本文: 冉林, 易贤, 赵照, 等. 结冰风洞发动机进气模拟系统稳流量进气控制方法研究及应用[J]. 航空动力学报, 2024, 39(9):20220673 doi: 10.13224/j.cnki.jasp.20220673
RAN Lin, YI Xian, ZHAO Zhao, et al. Research and application of steady flow intake control method in icing wind tunnel engine intake simulation system[J]. Journal of Aerospace Power, 2024, 39(9):20220673 doi: 10.13224/j.cnki.jasp.20220673
Citation: RAN Lin, YI Xian, ZHAO Zhao, et al. Research and application of steady flow intake control method in icing wind tunnel engine intake simulation system[J]. Journal of Aerospace Power, 2024, 39(9):20220673 doi: 10.13224/j.cnki.jasp.20220673

结冰风洞发动机进气模拟系统稳流量进气控制方法研究及应用

doi: 10.13224/j.cnki.jasp.20220673
详细信息
    作者简介:

    冉林(1994-),男,工程师,硕士,主要从事结冰风洞试验测控及自动化控制方面的研究

    通讯作者:

    熊建军(1971-),男,正高级工程师、硕士生导师,硕士,主要从事风洞试验测量与控制方面的研究。E-mail:173982434@qq.com

  • 中图分类号: V216.8

Research and application of steady flow intake control method in icing wind tunnel engine intake simulation system

  • 摘要:

    针对结冰风洞发动机进气部件试验稳流量进气控制难题,结合提供进气条件的发动机进气模拟系统的工作原理,提出采用卡尔曼滤波无模型自适应控制方法,通过建立系统动态线性化数据模型,利用卡尔曼滤波对实际动态流量输出做真值预估,估值与期望值的差值经过动态数据模型计算,得到调节系统抽气设备转速的输入量,进行稳流量进气控制,最后应用于某型号发动机进气部件防冰试验。试验结果表明:发动机进气模拟系统运行稳定可靠,输出的进气流量符合试验要求,进气稳流量控制精度达到0.1 kg/s。

     

  • 图 1  系统结构示意图

    Figure 1.  Schematic diagram of system structure

    图 2  文氏管流量计

    Figure 2.  Venturi flowmeter

    图 3  发动机进气模拟系统稳流量进气控制步骤

    Figure 3.  Steady flow intake control steps of engine intake simulation system

    图 4  喷雾前进气流量和高度的变化情况

    Figure 4.  Changes in intake air flow and height before spraying

    图 5  某型号发动机进气部件模型截面示意图

    Figure 5.  Schematic diagram of the cross-section of the model of the intake part of a certain type of engine

    图 6  14.2 kg/s进气流量的控制情况

    Figure 6.  Control of 14.2 kg/s intake air flow

    图 7  20.2 kg/s进气流量的控制情况

    Figure 7.  Control of 20.2 kg/s intake air flow

  • [1] 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.
    [2] 常士楠. 大型飞机的防/除冰问题[C]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集. 深圳: 中国航空学会, 2007: 469-475.
    [3] 宋建宇,吴晶峰,邱长波,等. 民用涡轴发动机进气系统结冰试验[J]. 航空动力学报,2020,35(5): 1089-1098. doi: 10.13224/j.cnki.jasp.2020.05.020

    SONG Jianyu,WU Jingfeng,QIU Changbo,et al. Civil turboshaft engine induction system icing test[J]. Journal of Aerospace Power,2020,35(5): 1089-1098. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.05.020
    [4] 綦蕾,李红琳,陈智强. 浅谈民用航空发动机适航技术新要求[J]. 航空动力,2020(1): 45-48.

    QI Lei,LI Honglin,CHEN Zhiqiang. New airworthiness technical requirements for civil aero engines[J]. Aerospace Power,2020(1): 45-48. (in Chinese)
    [5] 白尨,刘月平. 航空发动机进气系统结冰适航性条款研究[J]. 燃气涡轮试验与研究,2013,26(5): 41-45,54. doi: 10.3969/j.issn.1672-2620.2013.05.008

    BAI Meng,LIU Yueping. Airworthiness standards on aero-engine induction system icing[J]. Gas Turbine Experiment and Research,2013,26(5): 41-45,54. (in Chinese) doi: 10.3969/j.issn.1672-2620.2013.05.008
    [6] 韩冰冰,李新,付涵,等. CCAR-25与CCAR-33适航审定关系分析[J]. 航空工程进展,2018,9(4): 537-543. doi: 10.16615/j.cnki.1674-8190.2018.04.011

    HAN Bingbing,LI Xin,FU Han,et al. Analysis of the relationship between CCAR-25 and CCAR-33 airworthiness[J]. Advances in Aeronautical Science and Engineering,2018,9(4): 537-543. (in Chinese) doi: 10.16615/j.cnki.1674-8190.2018.04.011
    [7] 郭向东,柳庆林,赖庆仁,等. 大型结冰风洞气流场适航符合性验证[J]. 空气动力学学报,2021,39(2): 184-195. doi: 10.7638/kqdlxxb-2019.0086

    GUO Xiangdong,LIU Qinglin,LAI Qingren,et al. Airworthiness compliance verification of aerodynamic flowfield of a large-scale icing wind tunnel[J]. Acta Aerodynamica Sinica,2021,39(2): 184-195. (in Chinese) doi: 10.7638/kqdlxxb-2019.0086
    [8] 易贤,王斌,李伟斌,等. 飞机结冰冰形测量方法研究进展[J]. 航空学报,2017,38(2): 520711.

    YI Xian,WANG Bin,LI Weibin,et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica,2017,38(2): 520711. (in Chinese)
    [9] 赖庆仁,柳庆林,郭龙,等. 基于大型结冰风洞的航空发动机结冰与防冰试验技术[J]. 实验流体力学,2021,35(3): 1-8.

    LAI Qingren,LIU Qinglin,GUO Long,et al. Icing and anti-icing test technology of aero-engine based on large-scale icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2021,35(3): 1-8. (in Chinese)
    [10] 倪章松,刘森云,王桥,等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学,2019,33(6): 46-53.

    NI Zhangsong,LIU Senyun,WANG Qiao,et al. Research progress of test technologies for 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2019,33(6): 46-53. (in Chinese)
    [11] 熊建军,刘锡,冉林,等. 基于控制律的电加热防除冰系统设计与验证[J]. 测控技术,2021,40(2): 130-134,139. doi: 10.19708/j.ckjs.2020.07.276

    XIONG Jianjun,LIU Xi,RAN Lin,et al. Design and verification of electrical heating anti-icing/deicing system based on control law[J]. Measurement & Control Technology,2021,40(2): 130-134,139. (in Chinese) doi: 10.19708/j.ckjs.2020.07.276
    [12] 冉林, 熊建军, 王梓旭, 等. 一种进气模拟系统、进气模拟方法和空模型压损模拟方法: CN113375891B[P]. 2022-05-17.
    [13] 王先炜,樊晓锋,林森什,等. 结冰对直升机进气系统压力损失影响的试验研究及分析[J]. 直升机技术,2021(4): 62-66.

    WANG Xianwei,FAN Xiaofeng,LIN Senshi,et al. Analysis and research on icing test for pressure loss of air intake system of helicopter[J]. Helicopter Technique,2021(4): 62-66. (in Chinese)
    [14] 卢行远,侯忠生. 基于改进卡尔曼滤波器的扰动抑制无模型自适应控制方案[J]. 控制理论与应用,2022,39(7): 1211-1218.

    LU Xingyuan,HOU Zhongsheng. Model free adaptive control with disturbance rejection based on modified Kalman filter[J]. Control Theory & Applications,2022,39(7): 1211-1218. (in Chinese)
    [15] 侯忠生. 非参数模型及其自适应控制理论[M]. 北京: 科学出版社, 1999.
    [16] 侯忠生,韩志刚. 非线性系统参数估计及与之对偶的自适应控制[J]. 自动化学报,1995,21(1): 122-125. doi: 10.16383/j.aas.1995.01.020

    HOU Zhongsheng,HAN Zhigang. Parameter estimation algorithm of nonlinear systems and its dual adaptive control[J]. Acta Automatica Sinica,1995,21(1): 122-125. (in Chinese) doi: 10.16383/j.aas.1995.01.020
    [17] 侯忠生. 无模型自适应控制的现状与展望[J]. 控制理论与应用,2006,23(4): 586-592. doi: 10.3969/j.issn.1000-8152.2006.04.017

    HOU Zhongsheng. On model-free adaptive control: the state of the art and perspective[J]. Control Theory & Applications,2006,23(4): 586-592. (in Chinese) doi: 10.3969/j.issn.1000-8152.2006.04.017
    [18] 邓望权,田震,王子楠,等. 基于PI与无模型自适应控制结合的燃气轮机转速控制方法[J]. 推进技术,2022,43(7): 404-412. doi: 10.13675/j.cnki.tjjs.210006

    DENG Wangquan,TIAN Zhen,WANG Zinan,et al. Speed control method of gas turbine based on combination of PI and model free adaptive control[J]. Journal of Propulsion Technology,2022,43(7): 404-412. (in Chinese) doi: 10.13675/j.cnki.tjjs.210006
    [19] 田涛涛. 无模型自适应控制在无人驾驶汽车中的应用[D]. 北京: 北京交通大学, 2017.

    TIAN Taotao. Model-free adaptive control based on self-driving car[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [20] 彭丁聪. 卡尔曼滤波的基本原理及应用[J]. 软件导刊,2009,8(11): 32-34.

    PENG Dingcong. Basic principle and application of Kalman filter[J]. Software Guide,2009,8(11): 32-34. (in Chinese)
    [21] 李顶根,田瑞华,伍琳. 固冲发动机进气流量测量及卡尔曼滤波应用研究[J]. 航空兵器,2015,22(5): 66-68. doi: 10.3969/j.issn.1673-5048.2015.05.013

    LI Dinggen,TIAN Ruihua,WU Lin. Solid ramjet motor flow measurement and application of Kalman filter[J]. Aero Weaponry,2015,22(5): 66-68. (in Chinese) doi: 10.3969/j.issn.1673-5048.2015.05.013
  • 加载中
图(7)
计量
  • 文章访问数:  52
  • HTML浏览量:  41
  • PDF量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-08
  • 网络出版日期:  2023-10-27

目录

    /

    返回文章
    返回