留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于滚动轴承故障诊断的改进EWT方法

盛嘉玖 陈果 康玉祥 贺志远 王浩 尉询楷

盛嘉玖, 陈果, 康玉祥, 等. 一种用于滚动轴承故障诊断的改进EWT方法[J]. 航空动力学报, 2024, 39(9):20220677 doi: 10.13224/j.cnki.jasp.20220677
引用本文: 盛嘉玖, 陈果, 康玉祥, 等. 一种用于滚动轴承故障诊断的改进EWT方法[J]. 航空动力学报, 2024, 39(9):20220677 doi: 10.13224/j.cnki.jasp.20220677
SHENG Jiajiu, CHEN Guo, KANG Yuxiang, et al. An improved EWT method for fault diagnosis of rolling bearings[J]. Journal of Aerospace Power, 2024, 39(9):20220677 doi: 10.13224/j.cnki.jasp.20220677
Citation: SHENG Jiajiu, CHEN Guo, KANG Yuxiang, et al. An improved EWT method for fault diagnosis of rolling bearings[J]. Journal of Aerospace Power, 2024, 39(9):20220677 doi: 10.13224/j.cnki.jasp.20220677

一种用于滚动轴承故障诊断的改进EWT方法

doi: 10.13224/j.cnki.jasp.20220677
基金项目: 国家重大专项计划(J2019-Ⅳ-004-0071); 国家自然科学基金(52272436); 江苏省研究生科研与实践创新计划项目(KYCX20_0211)
详细信息
    作者简介:

    盛嘉玖(1999-),男,硕士生,主要从事航空发动机信号处理和故障诊断研究

    通讯作者:

    陈果(1972-),男,博士、教授、博士生导师,研究领域为航空发动机整机振动分析、状态监测与故障诊断。E-mail:cgzyx@263.net

  • 中图分类号: V263.6

An improved EWT method for fault diagnosis of rolling bearings

  • 摘要:

    针对经验小波变换(EWT)在滚动轴承故障信号最优频带提取中存在的问题,提出一种基于提取能量包络趋势线以自适应划分频带的改进EWT方法,并应用于滚动轴承故障诊断。利用Teager能量算子将频谱转换成能量谱,通过反复希尔伯特变换得到能量包络线。提取极大值并平滑处理,获得能量包络趋势线,对其进行1阶差分,选取有效极值点以自适应划分频带。构造一种归一化故障特征频率显著性指标,作为故障诊断和最优共振频带选取的有效判据。通过滚动轴承故障仿真和试验数据对算法进行验证。结果表明:相比于原始EWT,该方法可有效识别滚动轴承早期故障并合理选取最优共振频带。针对外、内圈故障数据所提指标可平均提升48.0%和174.1%。

     

  • 图 1  EWT边界分割示意图

    Figure 1.  Schematic diagram of EWT boundary segmentation

    图 2  算法流程

    Figure 2.  Algorithm flow

    图 3  仿真信号时域波形及频谱

    Figure 3.  Time domain waveform and spectrum of simulated signal

    图 4  仿真信号能量谱

    Figure 4.  Simulation signal energy spectrum

    图 5  第5次使用希尔伯特变换结果

    Figure 5.  Fifth time using Hilbert transform result

    图 6  能量包络趋势线及其1阶差分归一化结果

    Figure 6.  Normalization results of energy envelope trend line and first-order difference

    图 7  仿真信号有效极值点与改进EWT频带分割结果

    Figure 7.  Effective extreme points and the frequency band division result by improved EWT of simulation signal

    图 8  IMF2、IMF3、IMF4平方包络谱

    Figure 8.  Squared envelope spectrum of IMF2, IMF3, IMF4

    图 9  模拟试验器及预设故障

    Figure 9.  Simulated experimenter and preset faults

    图 10  外圈故障信号时域波形及频谱

    Figure 10.  Time domain waveform and spectrum of outer race fault signal

    图 11  外圈故障信号有效极值点与改进EWT频带分割结果

    Figure 11.  Effective extreme points and the frequency band division result by improved EWT of outer race fault signal

    图 12  IMF8、IMF9、IMF10平方包络谱

    Figure 12.  Envelope spectrum of IMF8, IMF9, IMF10

    图 13  原始EWT频带划分结果和IMF10平方包络谱

    Figure 13.  Frequency band division results decomposed by original EWT and IMF10 squared envelope spectrum

    图 14  内圈故障信号时域波形及频谱

    Figure 14.  Time domain waveform and spectrum of inner race fault signal

    图 15  内圈故障信号有效极值点与改进EWT频带分割结果

    Figure 15.  Effective extreme points and the frequency band division result by improved EWT of inner race fault signal

    图 16  IMF3平方包络谱

    Figure 16.  Square envelope spectrum of IMF3

    图 17  原始EWT频带划分结果和IMF4平方包络谱

    Figure 17.  Frequency band division results decomposed by original EWT and IMF4 squared envelope spectrum

    图 18  外圈故障数据9原始和改进EWT解调结果对比

    Figure 18.  Comparison of original and improved EWT demodulation results of outer race fault data 9

    图 19  内圈故障数据4原始和改进EWT解调结果对比

    Figure 19.  Comparison of original and improved EWT demodulation results of inner race fault data 4

    表  1  反复希尔伯特变换Vs结果

    Table  1.   Vs results of repeated Hilbert transform

    变换次数 第1次 第2次 第3次 第4次 第5次
    Vs 1.123 1 1.092 4 1.061 7 1.013 4 0.946 6
    下载: 导出CSV

    表  2  仿真信号改进EWT分解得到各IMF的S0-1

    Table  2.   S0-1 of each IMF decomposed by improved EWT of simulation signal

    IMF IMF1 IMF2 IMF3 IMF4 IMF5
    $ {S_{0 {\text{-}} 1}} $ 0.017 5 0.180 8 0.216 9 0.927 4 0.028 3
    下载: 导出CSV

    表  3  HRB 6206深沟球轴承参数

    Table  3.   Parameters of HRB 6206 deep groove ball bearings

    内径/
    mm
    外径/
    mm
    厚度/
    mm
    滚珠直径/
    mm
    节径/
    mm
    滚珠数/
    接触角/
    (°)
    30 62 16 9.5 46 9 0
    下载: 导出CSV

    表  4  外圈故障信号改进EWT分解得到各IMF的S0-1

    Table  4.   S0-1 of each IMF decomposed by improved EWT of outer race fault signal

    IMF IMF1 IMF2 IMF3 IMF4 IMF5
    S0-1 0.049 5 0.038 8 0.000 1 0.002 0 0.061 7
    IMF IMF6 IMF7 IMF8 IMF9 IMF10
    S0-1 0.008 7 0.014 8 0.912 1 0.999 8 0.853 6
    下载: 导出CSV

    表  5  外圈故障信号原始EWT分解得到各IMF的S0-1

    Table  5.   S0-1 of each IMF decomposed by original EWT of outer race fault signal

    IMF IMF1 IMF2 IMF3 IMF4 IMF5
    S0-1 0.003 6 0.088 7 0.013 0 0.015 7 0.000 1
    IMF IMF6 IMF7 IMF8 IMF9 IMF10
    S0-1 0.000 1 0.000 1 0.000 1 0.000 1 0.999 2
    下载: 导出CSV

    表  6  内圈故障信号改进EWT分解得到各IMF的S0-1

    Table  6.   S0-1 of each IMF decomposed by improved EWT of inner race fault signal

    IMF IMF1 IMF2 IMF3 IMF4
    $ {S_{0-1}} $ 0.000 6 0.000 7 0.648 5 0.002 7
    下载: 导出CSV

    表  7  内圈故障信号原始EWT分解得到各IMF的S0-1

    Table  7.   S0-1 of each IMF decomposed by original EWT of inner race fault signal

    IMF IMF1 IMF2 IMF3 IMF4
    $ {S_{0 {\text{-}} 1}} $ 0.001 2 0.004 8 0.000 1 0.064 5
    下载: 导出CSV

    表  8  不同转速下外圈故障信号S0-1及频带划分结果

    Table  8.   Outer race fault signal S0-1 and frequency band division result at different speeds

    数据 转速/(r/min) S0-1 频带/Hz
    原始EWT 改进EWT 原始EWT 改进EWT
    1 1500 0.119 5 1.000 0 700~892 8 866~16 000
    2 0.046 4 0.956 8 338~680 8 869~16 000
    3 0.006 7 0.763 8 1 058~16 000 8 881~16 000
    4 0.506 3 1.000 0 759~925 8 877~16 000
    5 0.476 2 1.000 0 982~16 000 8 897~16 000
    6 2500 1.000 0 1.000 0 442~977 435~975
    7 1.000 0 1.000 0 442~977 452~975
    8 1.000 0 1.000 0 442~977 427~918
    9 0.141 2 1.000 0 368~809 438~913
    10 0.990 4 1.000 0 442~883 434~970
    11 3500 0.845 1 0.998 3 981~16 000 14 252~16000
    12 0.989 8 0.999 7 981~15 192 8 796~15 192
    13 0.976 6 0.999 4 981~16 000 8 778~15 268
    14 0.978 2 0.999 5 1 829~16 000 10 002~14 399
    15 0.834 2 0.947 7 914~16 000 14 369~15 265
    S0-1平均值 0.660 7 0.977 7
    大于0.8占比/% 60.0 93.3
    下载: 导出CSV

    表  9  不同转速下内圈故障信号S0-1及频带划分结果

    Table  9.   Inner race fault signal S0-1 and frequency band division result at different speeds

    数据 转速/(r/min) S0-1 频带/Hz
    原始EWT 改进EWT 原始EWT 改进EWT
    11 5000.376 71.000 0353~773351~897
    21.000 01.000 0353~883345~875
    30.409 41.000 0705~1767345~874
    40.357 81.000 0353~773349~880
    50.410 41.000 0353~773351~897
    62 5000.186 00.659 21060~16 000941~2 371
    70.125 20.691 11211~16 0001 777~3 279
    80.275 00.646 31211~16 0001 175~2 372
    90.696 00.815 5881~16 000862~8 968
    100.040 40.547 31101~16 0001 174~2 550
    113 5000.166 50.633 587~4011 442~2 314
    120.021 10.570 5882~16 0001 102~1 741
    130.033 60.642 8784~16 000792~4 256
    140.029 70.735 6882~16 000807~1 520
    150.055 40.526 2784~16 000807~4 508
    S0-1平均值0.278 90.764 5
    大于0.5占比/%13.3100.0
    下载: 导出CSV
  • [1] 尉询楷,杨立,刘芳. 航空发动机预测与健康管理[M]. 北京: 国防工业出版社,2014.
    [2] 张西宁,李霖,刘书语,等. 基于能量峰定位的经验小波变换及在轴承微弱故障诊断中的应用[J]. 西安交通大学学报,2021,55(8): 1-8. ZHANG Xining,LI Lin,LIU Shuyu,et al. Empirical wavelet transform based on energy peak location with applications to bearing weak fault diagnosis[J]. Journal of Xi’an Jiaotong University,2021,55(8): 1-8. (in Chinese

    ZHANG Xining, LI Lin, LIU Shuyu, et al. Empirical wavelet transform based on energy peak location with applications to bearing weak fault diagnosis[J]. Journal of Xi’an Jiaotong University, 2021, 55(8): 1-8. (in Chinese)
    [3] 陈果,贺志远,尉询楷,等. 基于整机的中介轴承外圈剥落故障振动分析[J]. 航空动力学报,2020,35(3): 658-672. CHEN Guo,HE Zhiyuan,WEI Xunkai,et al. Vibration analysis of peeling fault of intermediate bearing outer ring based on whole aero-engine[J]. Journal of Aerospace Power,2020,35(3): 658-672. (in Chinese

    CHEN Guo, HE Zhiyuan, WEI Xunkai, et al. Vibration analysis of peeling fault of intermediate bearing outer ring based on whole aero-engine[J]. Journal of Aerospace Power, 2020, 35(3): 658-672. (in Chinese)
    [4] 陈果,郝腾飞,程小勇,等. 基于机匣测点信号的航空发动机滚动轴承故障诊断灵敏性分析[J]. 航空动力学报,2014,29(12): 2874-2884. CHEN Guo,HAO Tengfei,CHENG Xiaoyong,et al. Sensitivity analysis of fault diagnosis of aero-engine rolling bearing based on vibration signal measured on casing[J]. Journal of Aerospace Power,2014,29(12): 2874-2884. (in Chinese doi: 10.13224/j.cnki.jasp.2014.12.013

    CHEN Guo, HAO Tengfei, CHENG Xiaoyong, et al. Sensitivity analysis of fault diagnosis of aero-engine rolling bearing based on vibration signal measured on casing[J]. Journal of Aerospace Power, 2014, 29(12): 2874-2884. (in Chinese) doi: 10.13224/j.cnki.jasp.2014.12.013
    [5] RANDALL R B,ANTONI J. Rolling element bearing diagnostics:a tutorial[J]. Mechanical Systems and Signal Processing,2011,25(2): 485-520. doi: 10.1016/j.ymssp.2010.07.017
    [6] 张爽,王晓东,李祥,等. 基于FVMD的滚动轴承故障特征提取方法[J]. 振动与冲击,2022,41(6): 236-244. ZHANG Shuang,WANG Xiaodong,LI Xiang,et al. Extraction method of rolling bearing fault characteristics based on FVMD[J]. Journal of Vibration and Shock,2022,41(6): 236-244. (in Chinese

    ZHANG Shuang, WANG Xiaodong, LI Xiang, et al. Extraction method of rolling bearing fault characteristics based on FVMD[J]. Journal of Vibration and Shock, 2022, 41(6): 236-244. (in Chinese)
    [7] MARAGOS P,KAISER J F,QUATIERI T F. On amplitude and frequency demodulation using energy operators[J]. IEEE Transactions on Signal Processing,1993,41(4): 1532-1550. doi: 10.1109/78.212729
    [8] ZHENG Jinde,CAO Shijun,PAN Haiyang,et al. Spectral envelope-based adaptive empirical Fourier decomposition method and its application to rolling bearing fault diagnosis[J]. ISA Transactions,2022,129: 476-492. doi: 10.1016/j.isatra.2022.02.049
    [9] HUANG N E,SHEN Zheng,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical,Physical and Engineering Sciences,1998,454(1971): 903-995.
    [10] GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing,2013,61(16): 3999-4010. doi: 10.1109/TSP.2013.2265222
    [11] GILLES J,HEAL K. A parameterless scale-space approach to find meaningful modes in histograms:application to image and spectrum segmentation[J]. International Journal of Wavelets,Multiresolution and Information Processing,2014,12(6): 1450044. doi: 10.1142/S0219691314500441
    [12] CHEGINI S N,BAGHERI A,NAJAFI F. Application of a new EWT-based denoising technique in bearing fault diagnosis[J]. Measurement,2019,144: 275-297. doi: 10.1016/j.measurement.2019.05.049
    [13] 向玲,高雪媛,张力佳,等. IEWT和FSK在齿轮与滚动轴承故障诊断中的应用[J]. 振动 测试与诊断,2017,37(6): 1256-1261,1286. XIANG Ling,GAO Xueyuan,ZHANG Lijia,et al. Gear and rolling bearing fault diagnosis based on improved EWT and fast spectral kurtosis filtering[J]. Journal of Vibration,Measurement & Diagnosis,2017,37(6): 1256-1261,1286. (in Chinese

    XIANG Ling, GAO Xueyuan, ZHANG Lijia, et al. Gear and rolling bearing fault diagnosis based on improved EWT and fast spectral kurtosis filtering[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(6): 1256-1261, 1286. (in Chinese)
    [14] SONG Yueheng,ZENG Shengkui,MA Jiming,et al. A fault diagnosis method for roller bearing based on empirical wavelet transform decomposition with adaptive empirical mode segmentation[J]. Measurement,2018,117: 266-276. doi: 10.1016/j.measurement.2017.12.029
    [15] 邹磊. 基于共振解调的滚动轴承复合故障分析方法研究[D]. 南京: 东南大学,2021. ZOU Lei. Research on analysis method of rolling bearing compound fault based on resonance demodulation[D]. Nanjing: Southeast University,2021. (in Chinese

    ZOU Lei. Research on analysis method of rolling bearing compound fault based on resonance demodulation[D]. Nanjing: Southeast University, 2021. (in Chinese)
    [16] 李志农,刘跃凡,胡志峰,等. 经验小波变换-同步提取及其在滚动轴承故障诊断中的应用[J]. 振动工程学报,2021,34(6): 1284-1292. LI Zhinong,LIU Yuefan,HU Zhifeng,et al. Empirical wavelet transform-synchroextracting transform and its applications in fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering,2021,34(6): 1284-1292. (in Chinese

    LI Zhinong, LIU Yuefan, HU Zhifeng, et al. Empirical wavelet transform-synchroextracting transform and its applications in fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering, 2021, 34(6): 1284-1292. (in Chinese)
    [17] 李政,张炜,明安波,等. 基于IEWT和MCKD的滚动轴承故障诊断方法[J]. 机械工程学报,2019,55(23): 136-146. LI Zheng,ZHANG Wei,MING Anbo,et al. A novel fault diagnosis method based on improved empirical wavelet transform and maximum correlated kurtosis deconvolution for rolling element bearing[J]. Journal of Mechanical Engineering,2019,55(23): 136-146. (in Chinese doi: 10.3901/JME.2019.23.136

    LI Zheng, ZHANG Wei, MING Anbo, et al. A novel fault diagnosis method based on improved empirical wavelet transform and maximum correlated kurtosis deconvolution for rolling element bearing[J]. Journal of Mechanical Engineering, 2019, 55(23): 136-146. (in Chinese) doi: 10.3901/JME.2019.23.136
    [18] 刘尚坤,唐贵基,何玉灵. Teager能量算子结合MCKD的滚动轴承早期故障识别[J]. 振动与冲击,2016,35(15): 98-102. LIU Shangkun,TANG Guiji,HE Yuling. Incipient fault diagnosis of rolling bearings based on Teager energy operator and MCKD[J]. Journal of Vibration and Shock,2016,35(15): 98-102. (in Chinese doi: 10.13465/j.cnki.jvs.2016.15.016

    LIU Shangkun, TANG Guiji, HE Yuling. Incipient fault diagnosis of rolling bearings based on Teager energy operator and MCKD[J]. Journal of Vibration and Shock, 2016, 35(15): 98-102. (in Chinese) doi: 10.13465/j.cnki.jvs.2016.15.016
    [19] 裴迪,岳建海,焦静. 基于自相关与能量算子增强的滚动轴承微弱故障特征提取[J]. 振动与冲击,2021,40(11): 101-108,123. PEI Di,YUE Jianhai,JIAO Jing. Weak fault feature extraction of rolling bearing based on autocorrelation and energy operator enhancement[J]. Journal of Vibration and Shock,2021,40(11): 101-108,123. (in Chinese

    PEI Di, YUE Jianhai, JIAO Jing. Weak fault feature extraction of rolling bearing based on autocorrelation and energy operator enhancement[J]. Journal of Vibration and Shock, 2021, 40(11): 101-108, 123. (in Chinese)
    [20] 王天金,冯志鹏,郝如江,等. 基于Teager能量算子的滚动轴承故障诊断研究[J]. 振动与冲击,2012,31(2): 1-5,85. WANG Tianjin,FENG Zhipeng,HAO Rujiang,et al. Fault diagnosis of rolling element bearings based on Teager energy operator[J]. Journal of Vibration and Shock,2012,31(2): 1-5,85. (in Chinese

    WANG Tianjin, FENG Zhipeng, HAO Rujiang, et al. Fault diagnosis of rolling element bearings based on Teager energy operator[J]. Journal of Vibration and Shock, 2012, 31(2): 1-5, 85. (in Chinese)
    [21] 张萌物. 对离散系数定义及公式的完善与改进[J]. 西安石油学院学报(社会科学版),1999,8(2): 55-56. ZHANG Mengwu. Perfection and improvement of the definition and formula of discrete coefficient[J]. Journal of Xi’an Petrdleum Institute (Social Sciences Edition),1999,8(2): 55-56. (in Chinese

    ZHANG Mengwu. Perfection and improvement of the definition and formula of discrete coefficient[J]. Journal of Xi’an Petrdleum Institute (Social Sciences Edition), 1999, 8(2): 55-56. (in Chinese)
  • 加载中
图(19) / 表(9)
计量
  • 文章访问数:  99
  • HTML浏览量:  45
  • PDF量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-12
  • 网络出版日期:  2023-11-02

目录

    /

    返回文章
    返回