Aerodynamic-propulsion coupling characteristics of distributed electric propulsion system
-
摘要:
采用了基于
k-ω SST(shear stress transpot)湍流模型求解雷诺平均Navier-Stokes(RANS)方程的动量源方法(MSM),针对带增升襟翼的分布式动力机翼二维简化模型,开展了垂直起飞-过渡-巡航飞行状态下的气动-推进耦合特性及物理机理研究。研究表明:涵道的抽吸效应使分布式动力机翼呈现增升减阻现象,并推迟了机翼流动分离。相比于自由来流条件,涵道喷流中的增升襟翼失速偏角从12°显著增大到34°,同时增升襟翼诱导喷流偏转,使分布式动力构型总升力得到有效提升。-
关键词:
- 分布式电推进 /
- 垂直起降(VTOL) /
- 增升襟翼 /
- 动量源方法 /
- 抽吸效应
Abstract:A momentum source method (MSM) for solving the Reynolds average Navier-Stokes (RANS) equations based on the
$k {\text{-}} \omega $ SST (shear stress transpot) turbulence model was adopted. For the two-dimensional simplified model of the distributed propulsion wing with lift flaps, research on the aerodynamic-propulsion coupling characteristics and physical mechanism in the vertical take-off, transition and cruise flight state was carried out. The research showed that the suction effect of the duct made the distributed propulsion wing show the phenomenon of increasing lift and reducing drag, and delayed the flow separation of the wing. Compared with the freestream condition, the stall declination angle of the lift flaps in the ducted jet significantly increased from 12° to 34°, and at the same time the lift flaps induced jet deflection, so that the total lift of the distributed propulsion configuration was effectively raised. -
表 1 计算与实验结果对比
Table 1. Comparison of calculation and experimental results
数据来源 T/N Tlip/N Tp/N 实验 161.721 78.012 MRF 173.791 87.236 88.518 MSM 83.861 误差/% 7.46 4.02 表 2 不同网格量计算结果对比
Table 2. Comparison of calculation results with different grid quantities
网格量/万 CD CL CM 9 0.01450 0.5225 − 0.004341 25 0.01544 0.5438 − 0.004662 45 0.01545 0.5439 − 0.004626 -
[1] PORNET C,ISIKVEREN A T. Conceptual design of hybrid-electric transport aircraft[J]. Progress in Aerospace Sciences,2015,79: 114-135. doi: 10.1016/j.paerosci.2015.09.002 [2] 孔祥浩,张卓然,陆嘉伟,等. 分布式电推进飞机电力系统研究综述[J]. 航空学报,2018,39(1): 021651. KONG Xianghao,ZHANG Zhuoran,LU Jiawei,et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2018,39(1): 021651. (in ChineseKONG Xianghao, ZHANG Zhuoran, LU Jiawei, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651. (in Chinese) [3] ASHCRAFT S,PADRON A S,PASCIONI K A,et al. Review of propulsion technologies for N+3 subsonic vehicle concepts[R]. NASA/TM-2011-217239,2011. [4] 朱炳杰,杨希祥,宗建安,等. 分布式混合电推进飞行器技术[J]. 航空学报,2022,43(7): 025556. ZHU Bingjie,YANG Xixiang,ZONG Jian’an,et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica,2022,43(7): 025556. (in ChineseZHU Bingjie, YANG Xixiang, ZONG Jian’an, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556. (in Chinese) [5] GLADIN J,SANDS J,KESTNER B,et al. Effects of boundary layer ingesting (BLI) propulsion systems on engine cycle selection and HWB vehicle sizing[R]. AIAA 2012-837,2012. [6] AHUJA J,MAVRIS D N. A method for modeling the aero-propulsive coupling characteristics of BLI aircraft in conceptual design[R]. AIAA 2021-0112,2021. [7] BORER N K,PATTERSON M D,VIKEN J K,et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[R]. AIAA 2016-3920,2016. [8] 程锋. 组合动力飞行器宽速域气动/推进一体化耦合建模方法研究[D]. 西安: 西北工业大学,2019. CHENG Feng. Study on wide speed range aerodynamics/propulsion integrated coupled modeling of combined propulsion vehicle[D]. Xi’an: Northwestern Polytechnical University,2019. (in ChineseCHENG Feng. Study on wide speed range aerodynamics/propulsion integrated coupled modeling of combined propulsion vehicle[D]. Xi’an: Northwestern Polytechnical University, 2019. (in Chinese) [9] KIM H D. Distributed propulsion vehicles[C]//27th International Congress of the Aeronautical Sciences. Nice: ICAS,2010: E-17361. [10] PERRY A T,ANSELL P J,KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft,2018,55(6): 2414-2426. doi: 10.2514/1.C034861 [11] HERMETZ J,RIDEL M,DOLL C. Distributed electric propulsion for small business aircraft a concept-plane for key-technologies investigations[R]. Daejeon,South Korea: International Congress of the Aeronautical Sciences,2016 [12] 张星雨,高正红,雷涛,等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报,2022,43(8): 125389. ZHANG Xingyu,GAO Zhenghong,LEI Tao,et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2022,43(8): 125389. (in ChineseZHANG Xingyu, GAO Zhenghong, LEI Tao, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125389. (in Chinese) [13] RODRIGUEZ D,KROO I. A 2D multidisciplinary design method for boundary layer ingesting inlets[R]. AIAA 1999-838,1999. [14] MANTIČ-LUGO V,DOULGERIS G,SINGH R. Computational analysis of the effects of a boundary layer ingesting propulsion system in transonic flow[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2013,227(8): 1215-1232. [15] 项洋,吴江浩,张艳来. BLI效应下整流罩设计对翼型气动特性的影响[J]. 北京航空航天大学学报,2016,42(5): 945-952. XIANG Yang,WU Jianghao,ZHANG Yanlai. Effects of cowling design on aerodynamic performance of airfoil with BLI[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(5): 945-952. (in ChineseXIANG Yang, WU Jianghao, ZHANG Yanlai. Effects of cowling design on aerodynamic performance of airfoil with BLI[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 945-952. (in Chinese) [16] 张阳,周洲,郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报,2021,42(9): 224977. ZHANG Yang,ZHOU Zhou,GUO Jiahao. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica,2021,42(9): 224977. (in ChineseZHANG Yang, ZHOU Zhou, GUO Jiahao. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224977. (in Chinese) [17] 王红波. 基于动力诱导增升垂直起降气动设计研究[D]. 西安: 西北工业大学,2018. WANG Hongbo. Aerodynamic design of vertical takeoff and landing based on dynamic induced lift[D]. Xi’an: Northwestern Polytechnical University,2018. (in ChineseWANG Hongbo. Aerodynamic design of vertical takeoff and landing based on dynamic induced lift[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese) [18] 闫万方,吴江浩,张艳来. 分布式推进关键参数对BWB飞机气动特性影响[J]. 北京航空航天大学学报,2015,41(6): 1055-1065. YAN Wanfang,WU Jianghao,ZHANG Yanlai. Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(6): 1055-1065. (in ChineseYAN Wanfang, WU Jianghao, ZHANG Yanlai. Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1055-1065. (in Chinese) -