留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式电推进系统气动-推进耦合特性

徐德 许晓平 夏济宇 周洲

徐德, 许晓平, 夏济宇, 等. 分布式电推进系统气动-推进耦合特性[J]. 航空动力学报, 2024, 39(9):20220681 doi: 10.13224/j.cnki.jasp.20220681
引用本文: 徐德, 许晓平, 夏济宇, 等. 分布式电推进系统气动-推进耦合特性[J]. 航空动力学报, 2024, 39(9):20220681 doi: 10.13224/j.cnki.jasp.20220681
XU De, XU Xiaoping, XIA Jiyu, et al. Aerodynamic-propulsion coupling characteristics of distributed electric propulsion system[J]. Journal of Aerospace Power, 2024, 39(9):20220681 doi: 10.13224/j.cnki.jasp.20220681
Citation: XU De, XU Xiaoping, XIA Jiyu, et al. Aerodynamic-propulsion coupling characteristics of distributed electric propulsion system[J]. Journal of Aerospace Power, 2024, 39(9):20220681 doi: 10.13224/j.cnki.jasp.20220681

分布式电推进系统气动-推进耦合特性

doi: 10.13224/j.cnki.jasp.20220681
基金项目: 陕西省重点研发计划(2021ZDLGY09-08)
详细信息
    作者简介:

    徐德(1998-),男,硕士生,主要从事飞行器设计研究

    通讯作者:

    许晓平(1981-),男,副教授,博士,主要从事飞行器设计研究。E-mail:xuran@nwpu.edu.cn

  • 中图分类号: V211

Aerodynamic-propulsion coupling characteristics of distributed electric propulsion system

  • 摘要:

    采用了基于k-ω SST(shear stress transpot)湍流模型求解雷诺平均Navier-Stokes(RANS)方程的动量源方法(MSM),针对带增升襟翼的分布式动力机翼二维简化模型,开展了垂直起飞-过渡-巡航飞行状态下的气动-推进耦合特性及物理机理研究。研究表明:涵道的抽吸效应使分布式动力机翼呈现增升减阻现象,并推迟了机翼流动分离。相比于自由来流条件,涵道喷流中的增升襟翼失速偏角从12°显著增大到34°,同时增升襟翼诱导喷流偏转,使分布式动力构型总升力得到有效提升。

     

  • 图 1  DPWWF/DPW构型模型

    Figure 1.  DPWWF/DPW configuration model

    图 2  NASA涵道螺旋桨模型

    Figure 2.  NASA ducted propeller model

    图 3  三维几何模型

    Figure 3.  Three-dimensional geometric model

    图 4  涵道入口前5 mm处速度分布云图

    Figure 4.  contour of velocity distribution at 5 mm before the entrance of the duct

    图 5  涵道出口后5 mm处速度分布云图

    Figure 5.  contour of velocity distribution at 5 mm after the duct exit

    图 6  网格划分

    Figure 6.  Structural meshing

    图 7  DPW构型气动力示意图

    Figure 7.  Schematic map of aerodynamics of DPW

    图 8  气动力随来流速度的变化

    Figure 8.  Variation of aerodynamic force with freestream velocity

    图 9  气动力随来流迎角的变化

    Figure 9.  Variation of aerodynamic force with angle of attack

    图 10  气动力随转子推力的变化

    Figure 10.  Variation of aerodynamic force with rotor thrust

    图 11  不同转子推力下的压力云图

    Figure 11.  Pressure contours under different rotor thrusts

    图 12  气动力随涵道倾转角的变化

    Figure 12.  Variation of aerodynamic force with duct tilt angle

    图 13  0 N转子推力下压力云图及流线分布

    Figure 13.  Pressure contour and streamline distribution under rotor thrust of 0 N

    图 14  10 N转子推力下压力云图及流线分布

    Figure 14.  Pressure contour and streamline distribution under rotor thrust of 10 N

    图 15  气动力随涵道倾转角的变化(v=0.34 m/s)

    Figure 15.  Variation of aerodynamic force with duct tilt angle (v=0.34 m/s)

    图 16  不同涵道倾转角下压力云图及流线分布

    Figure 16.  Pressure contour and streamline distribution under different duct tilt angles

    图 17  不同来流速度下气动力随增升襟翼偏角的变化

    Figure 17.  Variation of aerodynamic force with the deflection angle of lift flaps at different freestream velocities

    图 18  不同来流速度下增升襟翼的速度云图

    Figure 18.  Velocity contours of the lift flaps under different freestream velocities

    图 19  不同来流迎角下气动力随增升襟翼偏角的变化

    Figure 19.  Variation of aerodynamic force with the deflection angle of lift flaps at different angles of attack

    图 20  气动力随增升襟翼偏角的变化(v=0.34 m/s)

    Figure 20.  Variation of aerodynamic force with the deflection angle of lift flaps (v=0.34 m/s)

    图 21  气动力随增升襟翼偏角的变化(v=25 m/s)

    Figure 21.  Variation of aerodynamic force with the deflection angle of lift flaps under freestream (v=25 m/s)

    图 22  增升襟翼不同偏角下压力云图及流线分布(v=0.34 m/s)

    Figure 22.  Pressure contour and streamline distribution under different deflection angles of lift flaps (v=0.34 m/s)

    图 23  增升襟翼不同偏角下压力云图及流线分布(v=25 m/s)

    Figure 23.  Pressure contour and streamline distribution under different deflection angles of lift flaps at freestream velocity (v=25 m/s)

    图 24  不同构型气动力随增升襟翼偏角的变化

    Figure 24.  Variation of aerodynamic force with the deflection angle of lift flaps for different configurations

    图 25  不同襟翼偏角下的压力云图

    Figure 25.  Pressure contours under different deflectionangles of lift flaps

    表  1  计算与实验结果对比

    Table  1.   Comparison of calculation and experimental results

    数据来源 T/N Tlip/N Tp/N
    实验 161.721 78.012
    MRF 173.791 87.236 88.518
    MSM 83.861
    误差/% 7.46 4.02
    下载: 导出CSV

    表  2  不同网格量计算结果对比

    Table  2.   Comparison of calculation results with different grid quantities

    网格量/万 CD CL CM
    9 0.01450 0.5225 −0.004341
    25 0.01544 0.5438 −0.004662
    45 0.01545 0.5439 −0.004626
    下载: 导出CSV
  • [1] PORNET C,ISIKVEREN A T. Conceptual design of hybrid-electric transport aircraft[J]. Progress in Aerospace Sciences,2015,79: 114-135. doi: 10.1016/j.paerosci.2015.09.002
    [2] 孔祥浩,张卓然,陆嘉伟,等. 分布式电推进飞机电力系统研究综述[J]. 航空学报,2018,39(1): 021651. KONG Xianghao,ZHANG Zhuoran,LU Jiawei,et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2018,39(1): 021651. (in Chinese

    KONG Xianghao, ZHANG Zhuoran, LU Jiawei, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651. (in Chinese)
    [3] ASHCRAFT S,PADRON A S,PASCIONI K A,et al. Review of propulsion technologies for N+3 subsonic vehicle concepts[R]. NASA/TM-2011-217239,2011.
    [4] 朱炳杰,杨希祥,宗建安,等. 分布式混合电推进飞行器技术[J]. 航空学报,2022,43(7): 025556. ZHU Bingjie,YANG Xixiang,ZONG Jian’an,et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica,2022,43(7): 025556. (in Chinese

    ZHU Bingjie, YANG Xixiang, ZONG Jian’an, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 025556. (in Chinese)
    [5] GLADIN J,SANDS J,KESTNER B,et al. Effects of boundary layer ingesting (BLI) propulsion systems on engine cycle selection and HWB vehicle sizing[R]. AIAA 2012-837,2012.
    [6] AHUJA J,MAVRIS D N. A method for modeling the aero-propulsive coupling characteristics of BLI aircraft in conceptual design[R]. AIAA 2021-0112,2021.
    [7] BORER N K,PATTERSON M D,VIKEN J K,et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[R]. AIAA 2016-3920,2016.
    [8] 程锋. 组合动力飞行器宽速域气动/推进一体化耦合建模方法研究[D]. 西安: 西北工业大学,2019. CHENG Feng. Study on wide speed range aerodynamics/propulsion integrated coupled modeling of combined propulsion vehicle[D]. Xi’an: Northwestern Polytechnical University,2019. (in Chinese

    CHENG Feng. Study on wide speed range aerodynamics/propulsion integrated coupled modeling of combined propulsion vehicle[D]. Xi’an: Northwestern Polytechnical University, 2019. (in Chinese)
    [9] KIM H D. Distributed propulsion vehicles[C]//27th International Congress of the Aeronautical Sciences. Nice: ICAS,2010: E-17361.
    [10] PERRY A T,ANSELL P J,KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft,2018,55(6): 2414-2426. doi: 10.2514/1.C034861
    [11] HERMETZ J,RIDEL M,DOLL C. Distributed electric propulsion for small business aircraft a concept-plane for key-technologies investigations[R]. Daejeon,South Korea: International Congress of the Aeronautical Sciences,2016
    [12] 张星雨,高正红,雷涛,等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报,2022,43(8): 125389. ZHANG Xingyu,GAO Zhenghong,LEI Tao,et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2022,43(8): 125389. (in Chinese

    ZHANG Xingyu, GAO Zhenghong, LEI Tao, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 125389. (in Chinese)
    [13] RODRIGUEZ D,KROO I. A 2D multidisciplinary design method for boundary layer ingesting inlets[R]. AIAA 1999-838,1999.
    [14] MANTIČ-LUGO V,DOULGERIS G,SINGH R. Computational analysis of the effects of a boundary layer ingesting propulsion system in transonic flow[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2013,227(8): 1215-1232.
    [15] 项洋,吴江浩,张艳来. BLI效应下整流罩设计对翼型气动特性的影响[J]. 北京航空航天大学学报,2016,42(5): 945-952. XIANG Yang,WU Jianghao,ZHANG Yanlai. Effects of cowling design on aerodynamic performance of airfoil with BLI[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(5): 945-952. (in Chinese

    XIANG Yang, WU Jianghao, ZHANG Yanlai. Effects of cowling design on aerodynamic performance of airfoil with BLI[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 945-952. (in Chinese)
    [16] 张阳,周洲,郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报,2021,42(9): 224977. ZHANG Yang,ZHOU Zhou,GUO Jiahao. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica,2021,42(9): 224977. (in Chinese

    ZHANG Yang, ZHOU Zhou, GUO Jiahao. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224977. (in Chinese)
    [17] 王红波. 基于动力诱导增升垂直起降气动设计研究[D]. 西安: 西北工业大学,2018. WANG Hongbo. Aerodynamic design of vertical takeoff and landing based on dynamic induced lift[D]. Xi’an: Northwestern Polytechnical University,2018. (in Chinese

    WANG Hongbo. Aerodynamic design of vertical takeoff and landing based on dynamic induced lift[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese)
    [18] 闫万方,吴江浩,张艳来. 分布式推进关键参数对BWB飞机气动特性影响[J]. 北京航空航天大学学报,2015,41(6): 1055-1065. YAN Wanfang,WU Jianghao,ZHANG Yanlai. Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2015,41(6): 1055-1065. (in Chinese

    YAN Wanfang, WU Jianghao, ZHANG Yanlai. Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1055-1065. (in Chinese)
  • 加载中
图(25) / 表(2)
计量
  • 文章访问数:  89
  • HTML浏览量:  39
  • PDF量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 网络出版日期:  2023-11-13

目录

    /

    返回文章
    返回