留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阀门开启时差对150 N自燃推进剂发动机工作过程的影响

陈锐达 田增 陈泓宇 徐辉

陈锐达, 田增, 陈泓宇, 等. 阀门开启时差对150 N自燃推进剂发动机工作过程的影响[J]. 航空动力学报, 2024, 39(9):20220683 doi: 10.13224/j.cnki.jasp.20220683
引用本文: 陈锐达, 田增, 陈泓宇, 等. 阀门开启时差对150 N自燃推进剂发动机工作过程的影响[J]. 航空动力学报, 2024, 39(9):20220683 doi: 10.13224/j.cnki.jasp.20220683
CHEN Ruida, TIAN Zeng, CHEN Hongyu, et al. Effect of valve opening time difference on working process of 150 N hypergolic propellant liquid rocket engine[J]. Journal of Aerospace Power, 2024, 39(9):20220683 doi: 10.13224/j.cnki.jasp.20220683
Citation: CHEN Ruida, TIAN Zeng, CHEN Hongyu, et al. Effect of valve opening time difference on working process of 150 N hypergolic propellant liquid rocket engine[J]. Journal of Aerospace Power, 2024, 39(9):20220683 doi: 10.13224/j.cnki.jasp.20220683

阀门开启时差对150 N自燃推进剂发动机工作过程的影响

doi: 10.13224/j.cnki.jasp.20220683
基金项目: “十四五”装备预研共用技术项目(50922010XXX)
详细信息
    作者简介:

    陈锐达(1995-),男,工程师,硕士,主要从事空间液体火箭发动机研究

  • 中图分类号: V434

Effect of valve opening time difference on working process of 150 N hypergolic propellant liquid rocket engine

  • 摘要:

    为了研究阀门较大开启时差对采用自燃推进剂的空间液体火箭发动机工作过程的影响,对150 N发动机开展高空模拟热试车,考察了氧阀、燃阀分别先开40、100、500、1 000 ms对发动机工作稳定性、点火推力峰值和响应时间的影响。试验结果表明,发动机均可以成功点火,稳定后的推力值基本不变。氧阀先开、燃阀先开时的点火推力峰值分别约为稳定推力的1.01~1.05倍和 1.04~1.07倍,与两阀同步信号开启时相当。燃阀先开时,启动响应时间延长了约16 ms。阀门单独打开时,氧化剂发生了充分闪蒸,流场中部夹杂冰粒喷出,燃料发生了部分闪蒸。当阀门开启时差达到500、1 000 ms时,氧阀、燃阀单独打开过程中,输出推力分别约11、6 N,分别占稳定推力的7%和4%,且后者输出推力呈现波动下降的趋势。

     

  • 图 1  发动机高空模拟热试车系统图

    Figure 1.  Schematic of high-altitude simulated thermal test system

    图 2  发动机工作曲线(阀门同步信号开启)

    Figure 2.  Curves of engine working parameters(valves open synchronously)

    图 3  发动机在试车台上点火照片

    Figure 3.  Photo of the engine igniting on the test bench

    图 4  发动机推力参数变化曲线(阀门先开1 000 ms)

    Figure 4.  Curves of engine thrust parameters (valve opens 1 000 ms in advance)

    图 5  阀门先开1000 ms时发动机单路推进剂喷出状态

    Figure 5.  Engine state of ejecting single-channel propellant when valve opens 1000 ms in advance

    图 6  不同阀门开启时差下发动机点火推力峰变化曲线

    Figure 6.  Curves of engine ignition thrust peak under different valve opening time differences

    图 7  氧阀先开时发动机工作参数曲线

    Figure 7.  Curves of engine working parameters when oxygen valve opens in advance

    图 8  燃阀先开时发动机工作参数曲线

    Figure 8.  Curves of engine working parameters when fuel valve opens in advance

    图 9  发动机启动段推力变化曲线

    Figure 9.  Curves of thrust variation during engine start-up

    图 10  氧阀先开1 000 ms时发动机温度参数变化

    Figure 10.  Variation of engine temperature parameters with oxygen valve opens 1 000 ms in advance

    表  1  150 N发动机理论设计参数

    Table  1.   Theoretical design parameters of 150 N engine

    真空推力/N 氧化剂质量流量/(g/s) 燃料质量流量/(g/s)
    150 32.15 19.48
    下载: 导出CSV

    表  2  高空模拟热试车工况

    Table  2.   Condition of high-altitude simulated thermal test

    序号 工况 真空推力/N 氧化剂入口压力/MPa 燃料入口压力/MPa 试车程序
    1# 正常同步开启 150 1.36 1.30 30 s
    2# 氧阀先开40 ms 150 1.36 1.30 2 s×100
    3# 氧阀先开100 ms 150 1.36 1.30 2 s×100
    4# 氧阀先开500 ms 150 1.36 1.30 2 s×100
    5# 氧阀先开1000 ms 150 1.36 1.30 2 s×100
    6# 燃阀先开40 ms 150 1.36 1.30 2 s×100
    7# 燃阀先开100 ms 150 1.36 1.30 2 s×100
    8# 燃阀先开500 ms 150 1.36 1.30 2 s×100
    9# 燃阀先开1000 ms 150 1.36 1.30 2 s×100
    下载: 导出CSV

    表  3  不同阀门开启时差下发动机工作参数

    Table  3.   Engine operating parameters under different valve opening time differences

    序号 工况 推力均值/N 推力峰均值/MPa 推力峰最大值/MPa 发动机启动时间/ms 发动机关闭时间/ms 试车程序
    1# 正常同步开启 152.4 160.5 160.5 68 81 30 s
    2# 氧阀先开40 ms 151.3 158.4 159.9 71 82 2 s×100
    3# 氧阀先开100 ms 152.6 154.1 155.5 67 82 2 s×100
    4# 氧阀先开500 ms 153.7 157.9 158.8 68 82 2 s×100
    5# 氧阀先开1000 ms 153.8 158.5 159.6 71 74 2 s×100
    6# 燃阀先开40 ms 152.0 159.8 162.0 87 82 2 s×100
    7# 燃阀先开100 ms 153.2 160.4 162.1 89 83 2 s×100
    8# 燃阀先开500 ms 153.8 160.5 161.7 86 76 2 s×100
    9# 燃阀先开1 000 ms 153.4 164.1 164.9 81 72 2 s×100
    下载: 导出CSV

    表  4  不同工况下发动机身部温度变化结果

    Table  4.   Results of engine body temperature under different working conditions

    序号 工况 温度/℃ 试车程序
    直线段 喉部
    1# 正常同步开启 1165 1096 30 s
    2# 氧阀先开40 ms 1009 832 2 s×100
    3# 氧阀先开100 ms 1017 831 2 s×100
    4# 氧阀先开500 ms 947 832 2 s×100
    5# 氧阀先开1000 ms 872 831 2 s×100
    6# 燃阀先开40 ms 1051 831 2 s×100
    7# 燃阀先开100 ms 1003 830 2 s×100
    8# 燃阀先开500 ms 970 830 2 s×100
    9# 燃阀先开1000 ms 888 830 2 s×100
    下载: 导出CSV
  • [1] 钱海涵,夏芳. 空间发动机真空起动点火时差及其实现方法[J]. 上海航天,1998,15(6): 28-32. QIAN Haihan,XIA Fang. The ingnition time difference and its realizable methods for spacecraft engine[J]. Aerospace Shanghai,1998,15(6): 28-32. (in Chinese

    QIAN Haihan, XIA Fang. The ingnition time difference and its realizable methods for spacecraft engine[J]. Aerospace Shanghai, 1998, 15(6): 28-32. (in Chinese)
    [2] 李平,王衍方. 四氧化二氮和肼推进剂点火过程的试验研究[J]. 火箭推进,1996,22(1): 1-5. LI Ping,WANG Yanfang. Experimental study on ignition process of nitrogen tetroxide and hydrazine propellants[J]. Journal of Rocket Propulsion,1996,22(1): 1-5. (in Chinese

    LI Ping, WANG Yanfang. Experimental study on ignition process of nitrogen tetroxide and hydrazine propellants[J]. Journal of Rocket Propulsion, 1996, 22(1): 1-5. (in Chinese)
    [3] SUTTON G P. History of liquid propellant rocket engines in the United States[J]. Journal of Propulsion and Power,2003,19(6): 978-1007. doi: 10.2514/2.6942
    [4] 俞肇铭. R-4D双组元姿控发动机的研制(四): 空间点火特性[J]. 现代防御技术,1982,10(5): 40-53. YU Zhaoming. Development of R-4D bicomponent attitude control engine (Ⅳ): space ignition characteristics[J]. Modern Defense Technology,1982,10(5): 40-53. (in Chinese

    YU Zhaoming. Development of R-4D bicomponent attitude control engine (Ⅳ): space ignition characteristics[J]. Modern Defense Technology, 1982, 10(5): 40-53. (in Chinese)
    [5] 刘昌国,陈锐达,刘犇,等. 小推力空间液体火箭发动机夹气启动特性[J]. 火箭推进,2021,47(3): 8-15. LIU Changguo,CHEN Ruida,LIU Ben,et al. Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J]. Journal of Rocket Propulsion,2021,47(3): 8-15. (in Chinese

    LIU Changguo, CHEN Ruida, LIU Ben, et al. Start-up characteristics of low-thrust space liquid rocket engine with entrained gas[J]. Journal of Rocket Propulsion, 2021, 47(3): 8-15. (in Chinese)
    [6] 杨立军,富庆飞. 液体火箭发动机推力室设计[M]. 北京: 北京航空航天大学出版社,2013.
    [7] 蔡国飙,李家文,田爱梅,等. 液体火箭发动机设计[M]. 北京: 北京航空航天大学出版社,2011.
    [8] KIM B,HONG M,LEE J,et al. Experimental investigation on water hammer phenomenon in the recirculation line of a liquid rocket engine[J]. Journal of the Korean Society of Propulsion Engineers,2021,25(2): 110-118. doi: 10.6108/KSPE.2021.25.2.110
    [9] 汪凤山,姚兆普,刘阳,等. 甲基肼/四氧化二氮发动机脉冲工况仿真与试验研究[J]. 空间控制技术与应用,2021,47(4): 56-62. WANG Fengshan,YAO Zhaopu,LIU Yang,et al. Numerical and experimental analysis of pulse mode characteristics in a MMH/NTO rocket engine[J]. Aerospace Control and Application,2021,47(4): 56-62. (in Chinese

    WANG Fengshan, YAO Zhaopu, LIU Yang, et al. Numerical and experimental analysis of pulse mode characteristics in a MMH/NTO rocket engine[J]. Aerospace Control and Application, 2021, 47(4): 56-62. (in Chinese)
    [10] 张黎辉,李家文,张雪梅,等. 航天器推进系统发动机动态特性研究[J]. 航空动力学报,2004,19(4): 546-549. ZHANG Lihui,LI Jiawen,ZHANG Xuemei,et al. Dynamic characteristics study of spacecraft propulsion system engine[J]. Journal of Aerospace Power,2004,19(4): 546-549. (in Chinese

    ZHANG Lihui, LI Jiawen, ZHANG Xuemei, et al. Dynamic characteristics study of spacecraft propulsion system engine[J]. Journal of Aerospace Power, 2004, 19(4): 546-549. (in Chinese)
    [11] 陈宏玉,刘红军,陈建华. 补燃循环发动机强迫起动过程[J]. 航空动力学报,2015,30(12): 3010-3016. CHEN Hongyu,LIU Hongjun,CHEN Jianhua. Forced start-up procedure of a staged combustion cycle engine[J]. Journal of Aerospace Power,2015,30(12): 3010-3016. (in Chinese

    CHEN Hongyu, LIU Hongjun, CHEN Jianhua. Forced start-up procedure of a staged combustion cycle engine[J]. Journal of Aerospace Power, 2015, 30(12): 3010-3016. (in Chinese)
    [12] 陈一丹,陈宏玉,刘亚洲. 液体火箭发动机汽蚀建模与低入口压力起动过程仿真[J]. 航空动力学报,2022,37(8): 1654-1663. CHEN Yidan,CHEN Hongyu,LIU Yazhou. Cavitation modeling and start-up under-rated pressure simulation of liquid rocket engine[J]. Journal of Aerospace Power,2022,37(8): 1654-1663. (in Chinese

    CHEN Yidan, CHEN Hongyu, LIU Yazhou. Cavitation modeling and start-up under-rated pressure simulation of liquid rocket engine[J]. Journal of Aerospace Power, 2022, 37(8): 1654-1663. (in Chinese)
    [13] 苏龙斐,张黎辉,潘海林. 卫星推进系统发动机启动过程数值仿真[J]. 航空动力学报,2005,20(4): 698-701. SU Longfei,ZHANG Lihui,PAN Hailin. Numerical simulation on the starting process of satellite propulsion system[J]. Journal of Aerospace Power,2005,20(4): 698-701. (in Chinese

    SU Longfei, ZHANG Lihui, PAN Hailin. Numerical simulation on the starting process of satellite propulsion system[J]. Journal of Aerospace Power, 2005, 20(4): 698-701. (in Chinese)
    [14] 巴延涛,侯凌云,毛晓芳,等. 甲基肼/四氧化二氮反应化学动力学模型构建及分析[J]. 物理化学学报,2014,30(6): 1042-1048. BA Yantao,HOU Lingyun,MAO Xiaofang,et al. Construction and analysis of a chemical kinetic model for monomethylhydrazine/nitrogen tetroxide reactions[J]. Acta Physico-Chimica Sinica,2014,30(6): 1042-1048. (in Chinese doi: 10.3866/PKU.WHXB201404093

    BA Yantao, HOU Lingyun, MAO Xiaofang, et al. Construction and analysis of a chemical kinetic model for monomethylhydrazine/nitrogen tetroxide reactions[J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1042-1048. (in Chinese) doi: 10.3866/PKU.WHXB201404093
    [15] KARIMI H,NASSIRHARAND A,BEHESHTI M. Dynamic and nonlinear simulation of liquid-propellant engines[J]. Journal of Propulsion and Power,2003,19(5): 938-944. doi: 10.2514/2.6187
    [16] 戴佳,黄敏超,沈赤兵,等. 双组元液体挤压推进系统启动过程时序分析[J]. 火箭推进,2006,32(2): 16-22. DAI Jia,HUANG Minchao,SHEN Chibing,et al. Startup process timing analysis of liquid bipropellant pressure-fed propulsion system[J]. Journal of Rocket Propulsion,2006,32(2): 16-22. (in Chinese

    DAI Jia, HUANG Minchao, SHEN Chibing, et al. Startup process timing analysis of liquid bipropellant pressure-fed propulsion system[J]. Journal of Rocket Propulsion, 2006, 32(2): 16-22. (in Chinese)
    [17] 杨林涛,沈赤兵. 基于正交试验设计的姿控发动机起动特性[J]. 火箭推进,2019,45(5): 38-44. YANG Lintao,SHEN Chibing. Numerical analysis on starting characteristics of attitude control engine based on orthogonal test design method[J]. Journal of Rocket Propulsion,2019,45(5): 38-44. (in Chinese

    YANG Lintao, SHEN Chibing. Numerical analysis on starting characteristics of attitude control engine based on orthogonal test design method[J]. Journal of Rocket Propulsion, 2019, 45(5): 38-44. (in Chinese)
    [18] 杨林涛,沈赤兵. 小推力推进系统启动过程仿真分析[J]. 导弹与航天运载技术,2019(5): 48-52. YANG Lintao,SHEN Chibing. Simulation analysis on start process of low-thrust propulsion system[J]. Missiles and Space Vehicles,2019(5): 48-52. (in Chinese

    YANG Lintao, SHEN Chibing. Simulation analysis on start process of low-thrust propulsion system[J]. Missiles and Space Vehicles, 2019(5): 48-52. (in Chinese)
    [19] 于杭健,彭兢,舒燕,等. 月面高温下推力器可靠性试验[J]. 中国空间科学技术,2021,41(6): 123-131. YU Hangjian,PENG Jing,SHU Yan,et al. Thruster reliability experiment under high temperature on lunar surface[J]. Chinese Space Science and Technology,2021,41(6): 123-131. (in Chinese

    YU Hangjian, PENG Jing, SHU Yan, et al. Thruster reliability experiment under high temperature on lunar surface[J]. Chinese Space Science and Technology, 2021, 41(6): 123-131. (in Chinese)
    [20] 庄杰. 液体火箭发动机高空试验台研制[D]. 上海: 上海交通大学,2009. ZHUANG Jie. Design for liquid rocket engine high altitude test-bed[D]. Shanghai: Shanghai Jiao Tong University,2009. (in Chinese

    ZHUANG Jie. Design for liquid rocket engine high altitude test-bed[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
    [21] 张奎好,王成刚. 变轨发动机大型高空模拟试验台[J]. 导弹与航天运载技术,2004(1): 57-60. ZHANG Kuihao,WANG Chenggang. Large altitude simulation test stand for orbit maneuver motor[J]. Missiles and Space Vehicles,2004(1): 57-60. (in Chinese

    ZHANG Kuihao, WANG Chenggang. Large altitude simulation test stand for orbit maneuver motor[J]. Missiles and Space Vehicles, 2004(1): 57-60. (in Chinese)
    [22] 李钰潼,王玫,谭紫阳,等. 低蒸汽压燃料与四氧化二氮自燃特性研究[J]. 西安交通大学学报,2022,56(6): 34-39. LI Yutong,WANG Mei,TAN Ziyang,et al. Study on hypergolic characteristics of low vapor pressure fuels and nitrous oxide[J]. Journal of Xi’an Jiaotong University,2022,56(6): 34-39. (in Chinese

    LI Yutong, WANG Mei, TAN Ziyang, et al. Study on hypergolic characteristics of low vapor pressure fuels and nitrous oxide[J]. Journal of Xi’an Jiaotong University, 2022, 56(6): 34-39. (in Chinese)
    [23] 李进华,孙兆懿. 四氧化二氮胶体饱和蒸气压的测试及分析[J]. 火炸药学报,2007,30(1): 74-77. LI Jinhua,SUN Zhaoyi. Test and analysis of the saturated vapor pressure of dinitrogen tetroxide colloid[J]. Chinese Journal of Explosives & Propellants,2007,30(1): 74-77. (in Chinese

    LI Jinhua, SUN Zhaoyi. Test and analysis of the saturated vapor pressure of dinitrogen tetroxide colloid[J]. Chinese Journal of Explosives & Propellants, 2007, 30(1): 74-77. (in Chinese)
    [24] 刘昌国,赵婷,姚锋,等. 第二代490 N轨控发动机研制及在轨飞行验证[J]. 推进技术,2020,41(1): 49-57. LIU Changguo,ZHAO Ting,YAO Feng,et al. Development and on-orbit flight verification of the second generation 490 N liquid apogee engine[J]. Journal of Propulsion Technology,2020,41(1): 49-57. (in Chinese

    LIU Changguo, ZHAO Ting, YAO Feng, et al. Development and on-orbit flight verification of the second generation 490 N liquid apogee engine[J]. Journal of Propulsion Technology, 2020, 41(1): 49-57. (in Chinese)
    [25] 刘昌国,赵婷,陈锐达,等. 星用490 N发动机喷注器局部燃气泄漏试验[J]. 航空动力学报,2021,36(3): 664-672. LIU Changguo,ZHAO Ting,CHEN Ruida,et al. Test on injector local gas leakage of 490 N engine for satellites[J]. Journal of Aerospace Power,2021,36(3): 664-672. (in Chinese

    LIU Changguo, ZHAO Ting, CHEN Ruida, et al. Test on injector local gas leakage of 490 N engine for satellites[J]. Journal of Aerospace Power, 2021, 36(3): 664-672. (in Chinese)
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  69
  • HTML浏览量:  61
  • PDF量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 网络出版日期:  2023-11-06

目录

    /

    返回文章
    返回