Numerical research on the flow field characteristics of the outdoor test stand under crosswind conditions
-
摘要:
采用CFD数值仿真方法,针对典型露天台进行三维简化建模,建立合适的边界条件,利用侧风设备产生的侧风风场,对露天试车台与发动机进行三维流场仿真。在此基础上,开展典型侧风风速、风向条件下的露天台与发动机联合仿真,分析在不同侧风条件下发动机进口及试验风机出口的流场特性,阐述侧风风速、风向对侧风设备出口风场均匀性及发动机进口气动交界面流场的影响规律。结果表明:随侧风速度增加,侧风装置出口风场品质提高,发动机进口流场畸变程度增加;随侧风角度增加,侧风装置出口风场品质先提高后变坏,而发动机进口气动交界面的平均总压恢复系数和最大周向畸变指数变化趋势不同;最大周向畸变指数更适合评估本研究中发动机进口流场畸变情况。
Abstract:A three-dimensional flow field simulation on the outdoor test stand was performed with the CFD numerical simulation method by using crosswind from the crosswind device, then a simplified model was established, and appropriate boundary conditions were obtained. On this basis, joint simulations of the outdoor test stand and the engine under typical crosswind velocities and directions were carried out. From the results, the flow field characteristics of the crosswind device outlet and the engine inlet were analyzed. And the changes of the spatial uniformity of the flow field at the crosswind device outlet and the flow field at the air interface plane of the engine inlet under the influence of the crosswind velocity and direction were revealed. It can be concluded as follows: with the increase of the crosswind velocity, the quality of the flow field at the crosswind device outlet was improved and the flow field distortion at the engine inlet went worse. With the increase of the crosswind angle, the quality of the flow field at the crosswind device was improved and then went worse, and the average total pressure recovery coefficient and the maximum circumferential distortion index at the air interface plane of the engine inlet shared different variations. The maximum circumferential distortion index is more suitable to evaluate the flow field distortion at the engine inlet in this research.
-
表 1 仿真与试验结果对比
Table 1. Comparison of simulation and test
测点 仿真计
算结果/
(m/s)试验测量/(m/s) 相对
误差/
%平均值 最大值 最小值 1 2.16 2.29 3.54 1.23 5.7 2 3.79 3.23 5.77 1.92 17.0 3 3.97 4.08 6.77 2.6 2.7 4 2.34 2.01 3.72 1.35 16.0 -
[1] 张志国. 航空发动机露天试验及试验能力建设[J]. 航空发动机,2021,47(5): 86-91. ZHANG Zhiguo. Open-air test and test capacity construction of aeroengine[J]. Aeroengine,2021,47(5): 86-91. (in ChineseZHANG Zhiguo. Open-air test and test capacity construction of aeroengine[J]. Aeroengine, 2021, 47(5): 86-91. (in Chinese) [2] 胡骏. 进气畸变对轴流压气机性能影响实验研究[J]. 航空动力学报,2001,16(2): 142-146. HU Jun. Inlet distortion effects in a five-stage compressor[J]. Journal of Aerospace Power,2001,16(2): 142-146. (in ChineseHU Jun. Inlet distortion effects in a five-stage compressor[J]. Journal of Aerospace Power, 2001, 16(2): 142-146. (in Chinese) [3] 中国民用航空总局. 运输类飞机适航标准: CCAR25-R4[S]. 北京: 中国民用航空总局,2017: 39. [4] 中国民用航空总局. 航空发动机适航规定: CCAR33-R2[S]. 北京: 中国民用航空总局,2016: 22. [5] TOURRETTE L. Navier-stokes simulations of air-intakes in crosswind using local preconditioning[R]. AIAA 2002-2739,2002. [6] COLIN Y, AUPOIX B, BOUSSUGE J F,et al. Numerical simulation of the distortion generated by crosswind inlet flows[R]. ISABE-2007-1210,2007. [7] HALL C A,HYNES T P. Measurements of intake separation hysteresis in a model fan and nacelle rig[J]. Journal of Propulsion and Power,2006,22(4): 872-879. doi: 10.2514/1.18644 [8] TRIANTAFYLLOU T,NIKOLAIDIS T,DIAKOSTEFANIS M,et al. Total pressure distortion levels at the aerodynamic interface plane of a military aircraft[J]. The Aeronautical Journal,2015,119(1219): 1147-1166. doi: 10.1017/S0001924000011179 [9] 李志平,朱星宇,张鹏,等. 侧风影响下航空发动机失速/喘振适航审定方法[J]. 航空动力学报,2020,35(7): 1549-1558. LI Zhiping,ZHU Xingyu,ZHANG Peng,et al. Aero-engine stall/surge airworthiness certification method under the influence of crosswind[J]. Journal of Aerospace Power,2020,35(7): 1549-1558. (in ChineseLI Zhiping, ZHU Xingyu, ZHANG Peng, et al. Aero-engine stall/surge airworthiness certification method under the influence of crosswind[J]. Journal of Aerospace Power, 2020, 35(7): 1549-1558. (in Chinese) [10] 王宝坤,林山,张帅,等. 大涵道比涡扇发动机侧风试验方法研究[J]. 航空发动机,2020,46(1): 70-74. WANG Baokun,LIN Shan,ZHANG Shuai,et al. Study on crosswind test method of high bypass ratio turbofan[J]. Aeroengine,2020,46(1): 70-74. (in Chinese doi: 10.13477/j.cnki.aeroengine.2020.01.014WANG Baokun, LIN Shan, ZHANG Shuai, et al. Study on crosswind test method of high bypass ratio turbofan[J]. Aeroengine, 2020, 46(1): 70-74. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2020.01.014 [11] 刘凯礼,孙一峰,钟园,等. 民用飞机进气道的侧风畸变研究[J]. 航空动力学报,2015,30(2): 289-296. LIU Kaili,SUN Yifeng,ZHONG Yuan,et al. Research on inlet distortion under crosswind for civil aircraft[J]. Journal of Aerospace Power,2015,30(2): 289-296. (in ChineseLIU Kaili, SUN Yifeng, ZHONG Yuan, et al. Research on inlet distortion under crosswind for civil aircraft[J]. Journal of Aerospace Power, 2015, 30(2): 289-296. (in Chinese) [12] 王海刚,刘石. 不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J]. 热能动力工程,2003,18(4): 337-342, 430. WANG Haigang,LIU Shi. Application and comparison of different turbulence models in the three-dimensional numerical simulation of cyclone separators[J]. Journal of Engineering for Thermal Energy and Power,2003,18(4): 337-342, 430. (in ChineseWANG Haigang, LIU Shi. Application and comparison of different turbulence models in the three-dimensional numerical simulation of cyclone separators[J]. Journal of Engineering for Thermal Energy and Power, 2003, 18(4): 337-342, 430. (in Chinese) [13] 王长喜,李明亮,刘选民. 英、美航空发动机部分特种地面试验简介[J]. 航空发动机,1998,24(3): 54-61. WANG Changxi,LI Mingliang,LIU Xuanmin. Brief introduction of some special ground tests of aero-engines in Britain and America[J]. Aeroengine,1998,24(3): 54-61. (in ChineseWANG Changxi, LI Mingliang, LIU Xuanmin. Brief introduction of some special ground tests of aero-engines in Britain and America[J]. Aeroengine, 1998, 24(3): 54-61. (in Chinese) [14] 邢菲,吴松霖,周伟,等. 自然风条件下露天试车台推力修正的数值模拟研究[J]. 推进技术,2022,43(8): 363-370. XING Fei,WU Songlin,ZHOU Wei,et al. Numerical simulation study on thrust correction for outdoor test stand in natural wind[J]. Journal of Propulsion Technology,2022,43(8): 363-370. (in ChineseXING Fei, WU Songlin, ZHOU Wei, et al. Numerical simulation study on thrust correction for outdoor test stand in natural wind[J]. Journal of Propulsion Technology, 2022, 43(8): 363-370. (in Chinese) [15] 王海. 中国大涵道比涡扇发动机整机试验验证规划研究[J]. 航空发动机,2019,45(6): 97-102. WANG Hai. Demonstration program study of overall engine test on high bypass ratio turbofan engine in China[J]. Aeroengine,2019,45(6): 97-102. (in ChineseWANG Hai. Demonstration program study of overall engine test on high bypass ratio turbofan engine in China[J]. Aeroengine, 2019, 45(6): 97-102. (in Chinese) [16] 国防科学技术工业委员会. 高速风洞和低速风洞流场品质规范: GJB 1179-91[S]. 国防科学技术工业委员会,1991: 7-8. [17] 肖毅,胡志东,曾平君,等. 尾吊发动机短舱的侧风进气道性能研究[J]. 教练机,2019(1): 31-35. XIAO Yi,HU Zhidong,ZENG Pingjun,et al. Performance study on side wind inlet duct of tail suspended engine nacelle[J]. Trainer,2019(1): 31-35. (in ChineseXIAO Yi, HU Zhidong, ZENG Pingjun, et al. Performance study on side wind inlet duct of tail suspended engine nacelle[J]. Trainer, 2019(1): 31-35. (in Chinese) [18] 陈俊,章欣涛,冯丽娟. 民用航空涡轮发动机短舱高速风洞试验[J]. 航空动力学报,2019,34(7): 1416-1424. CHEN Jun,ZHANG Xintao,FENG Lijuan. High speed wind tunnel test of civil aviation turbine engine nacelle[J]. Journal of Aerospace Power,2019,34(7): 1416-1424. (in Chinese doi: 10.13224/j.cnki.jasp.2019.07.002CHEN Jun, ZHANG Xintao, FENG Lijuan. High speed wind tunnel test of civil aviation turbine engine nacelle[J]. Journal of Aerospace Power, 2019, 34(7): 1416-1424. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.07.002