留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合物填充速度对火焰加速及DDT转变特性实验

张永辉 张启斌 赵明皓 王可 范明华 范玮

张永辉, 张启斌, 赵明皓, 等. 混合物填充速度对火焰加速及DDT转变特性实验[J]. 航空动力学报, 2024, 39(9):20220690 doi: 10.13224/j.cnki.jasp.20220690
引用本文: 张永辉, 张启斌, 赵明皓, 等. 混合物填充速度对火焰加速及DDT转变特性实验[J]. 航空动力学报, 2024, 39(9):20220690 doi: 10.13224/j.cnki.jasp.20220690
ZHANG Yonghui, ZHANG Qibin, ZHAO Minghao, et al. Experiment of the effect of mixture filling rate on flame acceleration and DDT transition characteristics[J]. Journal of Aerospace Power, 2024, 39(9):20220690 doi: 10.13224/j.cnki.jasp.20220690
Citation: ZHANG Yonghui, ZHANG Qibin, ZHAO Minghao, et al. Experiment of the effect of mixture filling rate on flame acceleration and DDT transition characteristics[J]. Journal of Aerospace Power, 2024, 39(9):20220690 doi: 10.13224/j.cnki.jasp.20220690

混合物填充速度对火焰加速及DDT转变特性实验

doi: 10.13224/j.cnki.jasp.20220690
基金项目: 国家自然科学基金(52176133,51876179,91441201)
详细信息
    作者简介:

    张永辉(1997-),男,博士生,主要从事爆震燃烧及爆震推进研究

    通讯作者:

    张启斌(1990-),男,副教授,博士,主要从事爆震燃烧及爆震推进研究。E-mail:zhangqibin@nwpu.edu.cn

  • 中图分类号: V231.2+2

Experiment of the effect of mixture filling rate on flame acceleration and DDT transition characteristics

  • 摘要:

    为研究脉冲爆震发动机中燃料/氧化剂混合物填充速度对火焰加速与缓燃向爆震转变过程(DDT)的影响,以乙烯为燃料、氧气体积分数为40%的富氧空气为氧化剂,进行了实验研究。采用不同的燃烧室构型、不同点火位置和不同的障碍物数量,在混合物填充速度为0、2.5、5.7、8.9 m/s和14.1 m/s的条件下,均成功获得充分发展的爆震波。结果表明:混合物填充速度越大,火焰发展也越快,对于能够起爆的工况,缓燃向爆震转变的时间最多可降低至填充速度为0 m/s时的38.9%;填充速度为8.9 m/s时,使火焰成功转变为爆震燃烧所需的障碍物数量由3对可减少为2对。提高混合物填充速度后,缩短DDT长度与点火段长度,依然能够成功建立爆震波,这对优化脉冲爆震发动机燃烧室构型,进而减少发动机长度和质量、提升推进性能具有一定的指导意义。

     

  • 图 1  实验系统示意图

    Figure 1.  Schematic of the experimental system

    图 2  爆震室示意图

    Figure 2.  Schematic of the detonation chamber

    图 3  爆震室(C)中轴线的速度分布

    Figure 3.  Velocity distribution along the central axis of the detonation chamber (C)

    图 4  高速摄像法测量火焰速度的原理及不确定度产生机理

    Figure 4.  Principle of flame velocity measurement by high-speed camera method and the mechanism of uncertainty generation

    图 5  爆震室内火焰发展(vf=0 m/s)

    Figure 5.  Flame development in the detonation chamber (vf=0 m/s)

    图 6  爆震室内火焰发展(vf=8.9 m/s)

    Figure 6.  Flame development in the detonation chamber (vf=8.9 m/s)

    图 7  火焰在光滑爆震室(A)内的传播速度

    Figure 7.  Velocity of flame propagation in the smooth detonation chamber (A)

    图 8  火焰在爆震室(B)内的传播速度发展(2对障碍物)

    Figure 8.  Velocity of flame propagation in the detonation chamber (B) (2 pairs of obstacles)

    图 9  火焰在爆震室(C)内的传播速度发展(3对障碍物)

    Figure 9.  Velocity of flame propagation in the detonation chamber (C) (3 pairs of obstacles)

    图 10  火焰在爆震室(D)内的传播速度发展(4对障碍物)

    Figure 10.  Velocity of flame propagation in the detonation chamber (D) (4 pairs of obstacles)

    图 11  爆震室中不同混合物填充速度下的tDDT

    Figure 11.  tDDT at a variety of gas velocity in the detonation chamber

    图 12  爆震室中不同混合物填充速度下的lDDT

    Figure 12.  lDDT at a variety of gas velocity in the detonation chamber

    图 13  不同填充速度对应的燃烧模态

    Figure 13.  Combustion modes for different filling rates

    图 14  不同点火位置下火焰传播速度发展

    Figure 14.  Velocity of flame propagation in different ignition location

    表  1  实验用爆震室尺寸

    Table  1.   Dimensions of the detonation chamber

    爆震室 d/mm l/mm l1/mm l2/mm l3/mm h/mm w/mm 障碍物个数
    A 25 600 25 140 0
    B 25 140 25 5 5 2
    C 25 140 25 5 5 3
    D 25 140 25 5 5 4
    C1 0 140 25 5 5 3
    C2 50 140 25 5 5 3
    C3 100 140 25 5 5 3
    下载: 导出CSV
  • [1] 严传俊,范玮. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社,2005.
    [2] WANG Yongjia,WANG Ke,FAN Wei,et al. Experimental study on the wall temperature and heat transfer of a two-phase pulse detonation rocket engine[J]. Applied Thermal Engineering,2017,114: 387-393. doi: 10.1016/j.applthermaleng.2016.12.001
    [3] 范玮,鲁唯,王可. 脉冲爆震火箭发动机应用基础问题研究进展[J]. 实验流体力学,2019,33(1): 1-13. FAN Wei,LU Wei,WANG Ke. Progress in the basic application issues of the pulse detonation rocket engine[J]. Journal of Experiments in Fluid Mechanics,2019,33(1): 1-13. (in Chinese doi: 10.11729/syltlx20180105

    FAN Wei, LU Wei, WANG Ke. Progress in the basic application issues of the pulse detonation rocket engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 1-13. (in Chinese) doi: 10.11729/syltlx20180105
    [4] 马鹏飞,范玮,何建男,等. 微小尺度多循环爆震实验研究[J]. 推进技术,2018,39(9): 2060-2067. MA Pengfei,FAN Wei,HE Jiannan,et al. Experimental research on multi-cycle detonations at micro scale[J]. Journal of Propulsion Technology,2018,39(9): 2060-2067. (in Chinese doi: 10.13675/j.cnki.tjjs.2018.09.017

    MA Pengfei, FAN Wei, HE Jiannan, et al. Experimental research on multi-cycle detonations at micro scale[J]. Journal of Propulsion Technology, 2018, 39(9): 2060-2067. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.09.017
    [5] ST GEORGE A C,DRISCOLL R B,ANAND V,et al. Fuel blending as a means to achieve initiation in a rotating detonation engine[R]. AIAA 2015-0633,2015.
    [6] MEYER T R,HOKE J L,BROWN M S,et al. Experimental study of deflagration-to-detonation enhancement techniques in a H2/air pulsed-detonation engine[R]. AIAA 2002-3720,2002.
    [7] NEW T,PANICKER P,LU F,et al. Experimental investigations on DDT enhancements by schelkin spirals in a PDE[R]. AIAA 2006-552,2006.
    [8] 王永佳,范玮,李舒欣,等. 流体障碍物对爆震燃烧起爆性能影响的实验研究[J]. 推进技术,2017,38(3): 646-652. WANG Yongjia,FAN Wei,LI Shuxin,et al. Experimental study for effects of fluidic obstacles on detonation initiation performance[J]. Journal of Propulsion Technology,2017,38(3): 646-652. (in Chinese doi: 10.13675/j.cnki.tjjs.2017.03.021

    WANG Yongjia, FAN Wei, LI Shuxin, et al. Experimental study for effects of fluidic obstacles on detonation initiation performance[J]. Journal of Propulsion Technology, 2017, 38(3): 646-652. (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.03.021
    [9] NEW T,PANICKER P,CHUI K,et al. Experimental study on deflagration-to-detonation transition enhancement methods in a PDE[R]. AIAA 2006-7958,2006.
    [10] 王云,范明华,刘赛南,等. 障碍物对脉冲爆震火箭发动机性能影响的实验研究[J]. 推进技术,2021,42(4): 834-841. WANG Yun,FAN Minghua,LIU Sainan,et al. Experimental study on effects of obstacles on performance of pulse detonation rocket engines[J]. Journal of Propulsion Technology,2021,42(4): 834-841. (in Chinese doi: 10.13675/j.cnki.tjjs.200242

    WANG Yun, FAN Minghua, LIU Sainan, et al. Experimental study on effects of obstacles on performance of pulse detonation rocket engines[J]. Journal of Propulsion Technology, 2021, 42(4): 834-841. (in Chinese) doi: 10.13675/j.cnki.tjjs.200242
    [11] KUZNETSOV M,ALEKSEEV V,MATSUKOV I,et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture[J]. Shock Waves,2005,14(3): 205-215. doi: 10.1007/s00193-005-0265-6
    [12] LEE J H,KNYSTAUTAS R,YOSHIKAWA N. Photochemical initiation of gaseous detonations[M]//BAEV V K, KONDRIKOV B N, KOROBEINIKOV V P. Gasdynamics of Explosions and Reactive Systems. Amsterdam: Elsevier,1980: 971-982.
    [13] LEE J H S,MOEN I O. The mechans of transition from deflagration to detonation in vapor cloud explosions[J]. Progress in Energy and Combustion Science,1980,6(4): 359-389. doi: 10.1016/0360-1285(80)90011-8
    [14] LEE J H,KNYSTAUTAS R,CHAN C K. Turbulent flame propagation in obstacle-filled tubes[J]. Symposium (International) on Combustion,1985,20(1): 1663-1672. doi: 10.1016/S0082-0784(85)80662-7
    [15] JOHANSEN C T,CICCARELLI G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame,2009,156(2): 405-416. doi: 10.1016/j.combustflame.2008.07.010
    [16] DEAN A. A review of PDE development for propulsion applications[R]. AIAA 2007-985,2007.
    [17] JOHANSEN C,CICCARELLI G. Numerical simulations of the flow field ahead of an accelerating flame in an obstructed channel[J]. Combustion Theory and Modelling,2010,14(2): 235-255. doi: 10.1080/13647830.2010.483020
    [18] SCHILD I,DEAN A. Influence of spark energy,spark number,and flow velocity on detonation initiation in a hydrocarbon-fueled PDE[R]. AIAA 2005-4211,2005.
    [19] CHAPIN D M,TANGIRALA V E,RASHEED A,et al. Detonation Initiation in moving ethylene-air mixtures at elevated temperature and pressure[R]. AIAA 2006-4793,2006.
    [20] FARINACCIO R,HARRIS P G,STOWE R A. Turbulent flow effects on ddt run-up distance for a pulse detonation engine[R]. AIAA 2004-3917,2004.
    [21] WANG Yun,DONG Rongxiao,SHEN Shuai,et al. Effect of fill flow rate on flame acceleration in a detonation channel[J]. Aerospace Science and Technology,2021,117: 106936.1-106936.8.
    [22] 何建男. 微尺度爆震燃烧的基础研究与微动力推进的初步探索[D]. 西安: 西北工业大学,2018. HE Jiannan. Fundamental study of microscale detonation and preliminary exploration on microscale propulsion[D]. Xi’an: Northwestern Polytechnical University,2018. (in Chinese

    HE Jiannan. Fundamental study of microscale detonation and preliminary exploration on microscale propulsion[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese)
    [23] VALIEV D M,BYCHKOV V,AKKERMAN V,et al. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration[J]. Physical Review E: Statistical,Nonlinear,and Soft Matter Physics,2009,80(3): 036317.
    [24] BYCHKOV V,VALIEV D,AKKERMAN V,et al. Gas compression moderates flame acceleration in deflagration-to-detonation transition[J]. Combustion Science and Technology,2012,184(7/8): 1066-1079.
    [25] MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications[M]. Cleveland,US : NASA Lewis Research Center,1996
    [26] KEENAN J J,MAKAROV D V,MOLKOV V V. Rayleigh-Taylor instability: modelling and effect on coherent deflagrations[J]. International Journal of Hydrogen Energy,2014,39(35): 20467-20473. doi: 10.1016/j.ijhydene.2014.03.230
    [27] DRAZIN P G. Kelvin-Helmholtz instability[J]. Encyclopedia of Atmospheric Sciences,2003,774(2): 1068-1072.
    [28] CICCARELLI G,WITT B. Detonation initiation by shock reflection from an orifice plate[J]. Shock Waves,2006,15(3/4): 259-265.
    [29] GOODWIN G B,HOUIM R W,ORAN E S. Shock transition to detonation in channels with obstacles[J]. Proceedings of the Combustion Institute,2017,36(2): 2717-2724. doi: 10.1016/j.proci.2016.06.160
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  58
  • HTML浏览量:  91
  • PDF量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 网络出版日期:  2023-12-05

目录

    /

    返回文章
    返回