Experiment of the effect of mixture filling rate on flame acceleration and DDT transition characteristics
-
摘要:
为研究脉冲爆震发动机中燃料/氧化剂混合物填充速度对火焰加速与缓燃向爆震转变过程(DDT)的影响,以乙烯为燃料、氧气体积分数为40%的富氧空气为氧化剂,进行了实验研究。采用不同的燃烧室构型、不同点火位置和不同的障碍物数量,在混合物填充速度为0、2.5、5.7、8.9 m/s和14.1 m/s的条件下,均成功获得充分发展的爆震波。结果表明:混合物填充速度越大,火焰发展也越快,对于能够起爆的工况,缓燃向爆震转变的时间最多可降低至填充速度为0 m/s时的38.9%;填充速度为8.9 m/s时,使火焰成功转变为爆震燃烧所需的障碍物数量由3对可减少为2对。提高混合物填充速度后,缩短DDT长度与点火段长度,依然能够成功建立爆震波,这对优化脉冲爆震发动机燃烧室构型,进而减少发动机长度和质量、提升推进性能具有一定的指导意义。
Abstract:To investigate the effect of fuel/oxidizer mixture filling rate on the flame acceleration and deflagration-to-detonation transition (DDT) in a pulse detonation engine, an experimental study was conducted with ethylene taken as fuel and oxygen-rich air of 40% oxygen volume fraction as the oxidizer. Fully developed detonation waves were successfully obtained using different combustion chamber configurations, different ignition positions, and different numbers of obstacles at the mixture filling speeds of 0, 2.5, 5.7, 8.9 m/s, and 14.1 m/s. The results showed that the greater filling speed of the mixture indicated the faster flame development for the ability to detonate under working conditions. The deflagration to detonation transition time can be reduced to 38.9% of the filling speed of 0 m/s when the filling speed was 8.9 m/s. Meanwhile, the number of obstacles required for DDT can be reduced to 2 pairs from 3 pairs. Shortening the DDT section and the ignition section length but increasing the mixture fill rate still allowed to successfully organize the detonation, providing some guidance for optimizing the combustion chamber configuration of pulse detonation engines, and reducing the engine length and weight for improving propulsion performance.
-
表 1 实验用爆震室尺寸
Table 1. Dimensions of the detonation chamber
爆震室 d/mm l/mm l1/mm l2/mm l3/mm h/mm w/mm 障碍物个数 A 25 600 25 140 0 B 25 140 25 5 5 2 C 25 140 25 5 5 3 D 25 140 25 5 5 4 C1 0 140 25 5 5 3 C2 50 140 25 5 5 3 C3 100 140 25 5 5 3 -
[1] 严传俊,范玮. 脉冲爆震发动机原理及关键技术[M]. 西安: 西北工业大学出版社,2005. [2] WANG Yongjia,WANG Ke,FAN Wei,et al. Experimental study on the wall temperature and heat transfer of a two-phase pulse detonation rocket engine[J]. Applied Thermal Engineering,2017,114: 387-393. doi: 10.1016/j.applthermaleng.2016.12.001 [3] 范玮,鲁唯,王可. 脉冲爆震火箭发动机应用基础问题研究进展[J]. 实验流体力学,2019,33(1): 1-13. FAN Wei,LU Wei,WANG Ke. Progress in the basic application issues of the pulse detonation rocket engine[J]. Journal of Experiments in Fluid Mechanics,2019,33(1): 1-13. (in Chinese doi: 10.11729/syltlx20180105FAN Wei, LU Wei, WANG Ke. Progress in the basic application issues of the pulse detonation rocket engine[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 1-13. (in Chinese) doi: 10.11729/syltlx20180105 [4] 马鹏飞,范玮,何建男,等. 微小尺度多循环爆震实验研究[J]. 推进技术,2018,39(9): 2060-2067. MA Pengfei,FAN Wei,HE Jiannan,et al. Experimental research on multi-cycle detonations at micro scale[J]. Journal of Propulsion Technology,2018,39(9): 2060-2067. (in Chinese doi: 10.13675/j.cnki.tjjs.2018.09.017MA Pengfei, FAN Wei, HE Jiannan, et al. Experimental research on multi-cycle detonations at micro scale[J]. Journal of Propulsion Technology, 2018, 39(9): 2060-2067. (in Chinese) doi: 10.13675/j.cnki.tjjs.2018.09.017 [5] ST GEORGE A C,DRISCOLL R B,ANAND V,et al. Fuel blending as a means to achieve initiation in a rotating detonation engine[R]. AIAA 2015-0633,2015. [6] MEYER T R,HOKE J L,BROWN M S,et al. Experimental study of deflagration-to-detonation enhancement techniques in a H2/air pulsed-detonation engine[R]. AIAA 2002-3720,2002. [7] NEW T,PANICKER P,LU F,et al. Experimental investigations on DDT enhancements by schelkin spirals in a PDE[R]. AIAA 2006-552,2006. [8] 王永佳,范玮,李舒欣,等. 流体障碍物对爆震燃烧起爆性能影响的实验研究[J]. 推进技术,2017,38(3): 646-652. WANG Yongjia,FAN Wei,LI Shuxin,et al. Experimental study for effects of fluidic obstacles on detonation initiation performance[J]. Journal of Propulsion Technology,2017,38(3): 646-652. (in Chinese doi: 10.13675/j.cnki.tjjs.2017.03.021WANG Yongjia, FAN Wei, LI Shuxin, et al. Experimental study for effects of fluidic obstacles on detonation initiation performance[J]. Journal of Propulsion Technology, 2017, 38(3): 646-652. (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.03.021 [9] NEW T,PANICKER P,CHUI K,et al. Experimental study on deflagration-to-detonation transition enhancement methods in a PDE[R]. AIAA 2006-7958,2006. [10] 王云,范明华,刘赛南,等. 障碍物对脉冲爆震火箭发动机性能影响的实验研究[J]. 推进技术,2021,42(4): 834-841. WANG Yun,FAN Minghua,LIU Sainan,et al. Experimental study on effects of obstacles on performance of pulse detonation rocket engines[J]. Journal of Propulsion Technology,2021,42(4): 834-841. (in Chinese doi: 10.13675/j.cnki.tjjs.200242WANG Yun, FAN Minghua, LIU Sainan, et al. Experimental study on effects of obstacles on performance of pulse detonation rocket engines[J]. Journal of Propulsion Technology, 2021, 42(4): 834-841. (in Chinese) doi: 10.13675/j.cnki.tjjs.200242 [11] KUZNETSOV M,ALEKSEEV V,MATSUKOV I,et al. DDT in a smooth tube filled with a hydrogen-oxygen mixture[J]. Shock Waves,2005,14(3): 205-215. doi: 10.1007/s00193-005-0265-6 [12] LEE J H,KNYSTAUTAS R,YOSHIKAWA N. Photochemical initiation of gaseous detonations[M]//BAEV V K, KONDRIKOV B N, KOROBEINIKOV V P. Gasdynamics of Explosions and Reactive Systems. Amsterdam: Elsevier,1980: 971-982. [13] LEE J H S,MOEN I O. The mechans of transition from deflagration to detonation in vapor cloud explosions[J]. Progress in Energy and Combustion Science,1980,6(4): 359-389. doi: 10.1016/0360-1285(80)90011-8 [14] LEE J H,KNYSTAUTAS R,CHAN C K. Turbulent flame propagation in obstacle-filled tubes[J]. Symposium (International) on Combustion,1985,20(1): 1663-1672. doi: 10.1016/S0082-0784(85)80662-7 [15] JOHANSEN C T,CICCARELLI G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame,2009,156(2): 405-416. doi: 10.1016/j.combustflame.2008.07.010 [16] DEAN A. A review of PDE development for propulsion applications[R]. AIAA 2007-985,2007. [17] JOHANSEN C,CICCARELLI G. Numerical simulations of the flow field ahead of an accelerating flame in an obstructed channel[J]. Combustion Theory and Modelling,2010,14(2): 235-255. doi: 10.1080/13647830.2010.483020 [18] SCHILD I,DEAN A. Influence of spark energy,spark number,and flow velocity on detonation initiation in a hydrocarbon-fueled PDE[R]. AIAA 2005-4211,2005. [19] CHAPIN D M,TANGIRALA V E,RASHEED A,et al. Detonation Initiation in moving ethylene-air mixtures at elevated temperature and pressure[R]. AIAA 2006-4793,2006. [20] FARINACCIO R,HARRIS P G,STOWE R A. Turbulent flow effects on ddt run-up distance for a pulse detonation engine[R]. AIAA 2004-3917,2004. [21] WANG Yun,DONG Rongxiao,SHEN Shuai,et al. Effect of fill flow rate on flame acceleration in a detonation channel[J]. Aerospace Science and Technology,2021,117: 106936.1-106936.8. [22] 何建男. 微尺度爆震燃烧的基础研究与微动力推进的初步探索[D]. 西安: 西北工业大学,2018. HE Jiannan. Fundamental study of microscale detonation and preliminary exploration on microscale propulsion[D]. Xi’an: Northwestern Polytechnical University,2018. (in ChineseHE Jiannan. Fundamental study of microscale detonation and preliminary exploration on microscale propulsion[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese) [23] VALIEV D M,BYCHKOV V,AKKERMAN V,et al. Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration[J]. Physical Review E: Statistical,Nonlinear,and Soft Matter Physics,2009,80(3): 036317. [24] BYCHKOV V,VALIEV D,AKKERMAN V,et al. Gas compression moderates flame acceleration in deflagration-to-detonation transition[J]. Combustion Science and Technology,2012,184(7/8): 1066-1079. [25] MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications[M]. Cleveland,US : NASA Lewis Research Center,1996 [26] KEENAN J J,MAKAROV D V,MOLKOV V V. Rayleigh-Taylor instability: modelling and effect on coherent deflagrations[J]. International Journal of Hydrogen Energy,2014,39(35): 20467-20473. doi: 10.1016/j.ijhydene.2014.03.230 [27] DRAZIN P G. Kelvin-Helmholtz instability[J]. Encyclopedia of Atmospheric Sciences,2003,774(2): 1068-1072. [28] CICCARELLI G,WITT B. Detonation initiation by shock reflection from an orifice plate[J]. Shock Waves,2006,15(3/4): 259-265. [29] GOODWIN G B,HOUIM R W,ORAN E S. Shock transition to detonation in channels with obstacles[J]. Proceedings of the Combustion Institute,2017,36(2): 2717-2724. doi: 10.1016/j.proci.2016.06.160