Effect of axial spacing on tonal noise of a single-stage fan
-
摘要:
针对单级风扇纯音噪声的远场声辐射预测,介绍了一种混合计算方法。其中,非线性谐波(NLH)方法用于转静干涉载荷声源的计算,声类比方法用以获得自由场的辐射声场,机匣的散射作用通过边界积分方法(BIEM)加以考虑。该混合方法可以同时预测管道内的声传播和管道外的声辐射。采用NASA的Advanced Noise Control Fan(ANCF)项目中的单级风扇作为研究对象,研究了实验间距下转静交界面位置的影响,确定交界面位置取在转静间距0.5倍,此时和远场声辐射实验结果最为接近。随后研究转静轴向间距对纯音噪声的影响,随着间距的减小,静子表面非定常载荷幅值、远场噪声指向性声压级相应增加。在低频下噪声指向性形状保持一致,高频噪声的指向性形状和声压级变化明显。
-
关键词:
- 转静干涉 /
- 交界面 /
- 轴向间距 /
- 非线性谐波(NLH)方法 /
- 边界积分方法(BIEM)
Abstract:An integrated computational approach was introduced for prediction of single-stage fan tonal noise. The nonlinear harmonic (NLH) method was used for computation of acoustic sources, the incidence wave in the free field was based on acoustic analogy, and the scattering wave generated by boundaries was solved by boundary integral element method (BIEM). The sound propagation inside the duct and radiation outside the duct can be predicted simultaneously. Then, the present method was applied to tonal noise prediction of the Advanced Noise Control Fan (ANCF) developed by NASA Glenn Research Center. The effect of interface locations was investigated at first as the experimental settings. The results indicated that the interface location at 0.5 times the axial spacing was most suitable for the computation of rotor-stator interaction, which was closest to the experimental results of tonal noise. Then, the effect of axial spacing on tonal noise was calculated. With the decrease of axial spacing, harmonic loading on the stator vanes and sound radiation in the far field showed an increasing trend. The shape of noise directivity at the first blade passing frequency (BPF) was similar, and the noise directivity at the second BPF showed big difference in shape and amplitude.
-
表 1 ANCF叶片参数
Table 1. ANCF blade row characteristics
部件 叶片数 半径/m 弦长/m 叶尖间隙/mm 转子 16 0.609 0.133 0.75 静子 14 0.610 0.114 表 2 边界条件
Table 2. Boundary conditions
参数 数值 进口 绝对总压/Pa 101325 绝对总温/K 288.15 湍流黏度/10−5 (m2/s) 2 出口 静压/Pa 101300 表 3 3种交界面位置气动性能
Table 3. Aerodynamic performance of 3 interface locations
参数 数值 L/S 0.25 0.5 0.75 流量/(kg/s) 51.714 51.444 51.729 效率/% 74.9 73.3 76.9 表 4 3种轴向间距下气动性能
Table 4. Aerodynamic performance of 3 axial spacings
参数 S/C 0.5 1 2 流量/(kg/s) 51.733 51.444 51.746 效率/% 74.9 73.3 74.9 -
[1] HUGHES C,ZEUG T. NASA/GE aviation collaborative partnership research in ultra high bypass cycle propulsion concepts[R]. NASA Technical Reports E-16903,2008. [2] DE LABORDERIE J,MOREAU S. Prediction of tonal ducted fan noise[J]. Journal of Sound and Vibration,2016,372: 105-132. doi: 10.1016/j.jsv.2016.02.032 [3] PEAKE N,PARRY A B. Modern challenges facing turbomachinery aeroacoustics[J]. Annual Review of Fluid Mechanics,2012,44(1): 227-248. doi: 10.1146/annurev-fluid-120710-101231 [4] BALOMBIN J,STAKOLICH E G. Effect of rotor-to-stator spacing on acoustic performance of a full-scale fan (QF-5) for turbofan engines[R]. NASA-TM-X-3103,1974. [5] SCHULTEN J. Sound generated by rotor wakes interacting with a leaned vane stator[J]. AIAA Journal,2012,20(10): 1352-1358. [6] 蒋永松,郑文涛,赵航,等. 风扇出口导向叶片低噪声设计: Ⅰ方法与优化[J]. 航空学报,2019,40(10): 122955. JIANG Yongsong,ZHENG Wentao,ZHAO Hang,et al. Low noise design of fan outlet guide vane:Part Ⅰ method and optimization[J]. Acta Aeronautica et Astronautica Sinica,2019,40(10): 122955. (in ChineseJIANG Yongsong, ZHENG Wentao, ZHAO Hang, et al. Low noise design of fan outlet guide vane: Part Ⅰ method and optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122955. (in Chinese) [7] 郑文涛,蒋永松,赵航,等. 风扇出口导向叶片低噪声设计: Ⅱ数值验证[J]. 航空学报,2019,40(10): 122956. ZHENG Wentao,JIANG Yongsong,ZHAO Hang,et al. Low noise design of fan outlet guide vane:Part Ⅱ numerical verifications[J]. Acta Aeronautica et Astronautica Sinica,2019,40(10): 122956. (in ChineseZHENG Wentao, JIANG Yongsong, ZHAO Hang, et al. Low noise design of fan outlet guide vane: Part Ⅱ numerical verifications[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122956. (in Chinese) [8] HSU S T,WO A M. Near-wake measurement in a rotor/stator axial compressor using slanted hot-wire technique[J]. Experiments in Fluids,1997,23(5): 441-444. doi: 10.1007/s003480050133 [9] BIEDRON R,RUMSEY C,PODBOY G. Predicting the rotor-stator interaction acoustics of a ducted fan engine[R]. AIAA 2001-664,2001. [10] TOPOL D A. Rotor wake/stator interaction noise-predictions vs data[J]. Journal of Aircraft,1993,30(5): 728-735. doi: 10.2514/3.56895 [11] ZHANG Weiguang,WANG Xiaoyu,JING Xiaodong,et al. Three-dimensional analysis of vane sweep effects on fan interaction noise[J]. Journal of Sound and Vibration,2017,391: 73-94. doi: 10.1016/j.jsv.2016.12.014 [12] SANJOSE M,DAROUKH M,MAGNET W,et al. Tonal fan noise prediction and validation on the ANCF configuration[J]. Noise Control Engineering Journal,2015,63(6): 552-561. doi: 10.3397/1/376349 [13] HE Li,NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal,1998,36: 2005-2012. doi: 10.2514/2.328 [14] FERRANTE P,DI FRANCESCANTONIO P,HOFFER P A,et al. Integrated “CFD-Acoustic” computational approach to the simulation of aircraft fan noise[R]. ASME Paper GT2014-26429,2014. [15] 药晓江,董景新,尚捷,等. 非线性谐波法在叶轮机械非定常计算中的应用[J]. 推进技术,2016,37(4): 632-639. YAO Xiaojiang,DONG Jingxin,SHANG Jie,et al. Application of non-linear harmonic in turbomarchinery 3D flow field unsteady simulation[J]. Journal of Propulsion Technology,2016,37(4): 632-639. (in Chinese doi: 10.13675/j.cnki.tjjs.2016.04.005YAO Xiaojiang, DONG Jingxin, SHANG Jie, et al. Application of non-linear harmonic in turbomarchinery 3D flow field unsteady simulation[J]. Journal of Propulsion Technology, 2016, 37(4): 632-639. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.04.005 [16] CHOI J,CHOI T. Investigation of axial spacing and effect of interface location in a 1.5 stage transonic axial compressor[R]. ASME Paper GT2015-44020,2015. [17] SUTLIFF D. Advanced noise control fan: a 20-year retrospective[R]. NASA Technical Report No. GRC-E-DAA-TN32659,2016. [18] YANG Bing,WANG T Q. Investigation of the influence of liner hard-splices on duct radiation/propagation and mode scattering[J]. Journal of Sound and Vibration,2008,315(4/5): 1016-1034. [19] ENVIA E. Aeroacoustic analysis of a high-speed open rotor[J]. International Journal of Aeroacoustics,2015,14(3/4): 569-606. [20] FARASSAT F. Derivation of formulations 1 and 1A of farassat[R]. NASA/TM-2007-214853,2007. [21] DUNN M H. TBIEM3D: a computer program for predicting ducted fan engine noise [R]. NASA/CR-97-206232,1997. -