留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴向间距对单级风扇纯音噪声的影响

束王坚 陈聪聪 杜林 孙晓峰

束王坚, 陈聪聪, 杜林, 等. 轴向间距对单级风扇纯音噪声的影响[J]. 航空动力学报, 2024, 39(9):20220692 doi: 10.13224/j.cnki.jasp.20220692
引用本文: 束王坚, 陈聪聪, 杜林, 等. 轴向间距对单级风扇纯音噪声的影响[J]. 航空动力学报, 2024, 39(9):20220692 doi: 10.13224/j.cnki.jasp.20220692
SHU Wangjian, CHEN Congcong, DU Lin, et al. Effect of axial spacing on tonal noise of a single-stage fan[J]. Journal of Aerospace Power, 2024, 39(9):20220692 doi: 10.13224/j.cnki.jasp.20220692
Citation: SHU Wangjian, CHEN Congcong, DU Lin, et al. Effect of axial spacing on tonal noise of a single-stage fan[J]. Journal of Aerospace Power, 2024, 39(9):20220692 doi: 10.13224/j.cnki.jasp.20220692

轴向间距对单级风扇纯音噪声的影响

doi: 10.13224/j.cnki.jasp.20220692
基金项目: 国家自然科学基金(52022009); 航空发动机及燃气轮机基础科学中心(P2022-A-Ⅱ-003-001)
详细信息
    作者简介:

    束王坚(1995-),男,博士生,主要从事压气机转静干涉噪声数值模拟研究

    通讯作者:

    杜林(1982-),男,研究员,博士,主要从事航空发动机气动弹性、气动声学研究。E-mail:lindu@buaa.edu.cn

  • 中图分类号: V231

Effect of axial spacing on tonal noise of a single-stage fan

  • 摘要:

    针对单级风扇纯音噪声的远场声辐射预测,介绍了一种混合计算方法。其中,非线性谐波(NLH)方法用于转静干涉载荷声源的计算,声类比方法用以获得自由场的辐射声场,机匣的散射作用通过边界积分方法(BIEM)加以考虑。该混合方法可以同时预测管道内的声传播和管道外的声辐射。采用NASA的Advanced Noise Control Fan(ANCF)项目中的单级风扇作为研究对象,研究了实验间距下转静交界面位置的影响,确定交界面位置取在转静间距0.5倍,此时和远场声辐射实验结果最为接近。随后研究转静轴向间距对纯音噪声的影响,随着间距的减小,静子表面非定常载荷幅值、远场噪声指向性声压级相应增加。在低频下噪声指向性形状保持一致,高频噪声的指向性形状和声压级变化明显。

     

  • 图 1  BIEM模型

    Figure 1.  Sketch of BIEM configuration

    图 2  ANCF结构和计算域

    Figure 2.  Configuration and computational domain of ANCF

    图 3  远场声压观察点位置示意图

    Figure 3.  Observer locations in the far field

    图 4  交界面位置和轴向间距示意图

    Figure 4.  Axial spacing and interface location

    图 5  3种交界面位置下1阶谐波压力幅值分布

    Figure 5.  1st harmonic pressure amplitude of 3 interface locations

    图 6  3种交界面位置下BPF噪声远场指向性

    Figure 6.  Noise directivity at BPF of 3 interface locations

    图 7  3种交界面位置下2阶谐波压力幅值分布

    Figure 7.  2nd harmonic pressure amplitude of 3 interface locations

    图 8  0.95倍管道半径处2阶谐波压力幅值沿弦向分布

    Figure 8.  2nd harmonic pressure amplitude at 0.95 span of duct radius along the chordwise direction

    图 9  3种交界面位置下2BPF噪声远场指向性

    Figure 9.  Noise directivity at 2BPF of 3 interface locations

    图 10  3种轴向间距下静子表面1阶谐波压力幅值分布

    Figure 10.  1st harmonic pressure amplitude over the blade surface of 3 axial spacings

    图 11  3种轴向间距下BPF噪声远场指向性

    Figure 11.  Noise directivity at BPF of 3 axial spacings

    图 12  3种轴向间距下静子表面2阶谐波压力幅值分布

    Figure 12.  2nd harmonic pressure amplitude over the blade surface of 3 axial spacings

    图 13  3种轴向间距下0.95倍半径处二阶谐波压力幅值

    Figure 13.  2nd harmonic pressure amplitude at 0.95 span of 3 axial spacings

    图 14  3种轴向间距下2BPF噪声远场指向性

    Figure 14.  Noise directivity at 2BPF of 3 axial spacings

    表  1  ANCF叶片参数

    Table  1.   ANCF blade row characteristics

    部件叶片数半径/m弦长/m叶尖间隙/mm
    转子160.6090.1330.75
    静子140.6100.114
    下载: 导出CSV

    表  2  边界条件

    Table  2.   Boundary conditions

    参数 数值
    进口 绝对总压/Pa 101325
    绝对总温/K 288.15
    湍流黏度/10−5 (m2/s) 2
    出口 静压/Pa 101300
    下载: 导出CSV

    表  3  3种交界面位置气动性能

    Table  3.   Aerodynamic performance of 3 interface locations

    参数 数值
    L/S 0.25 0.5 0.75
    流量/(kg/s) 51.714 51.444 51.729
    效率/% 74.9 73.3 76.9
    下载: 导出CSV

    表  4  3种轴向间距下气动性能

    Table  4.   Aerodynamic performance of 3 axial spacings

    参数 S/C
    0.5 1 2
    流量/(kg/s) 51.733 51.444 51.746
    效率/% 74.9 73.3 74.9
    下载: 导出CSV
  • [1] HUGHES C,ZEUG T. NASA/GE aviation collaborative partnership research in ultra high bypass cycle propulsion concepts[R]. NASA Technical Reports E-16903,2008.
    [2] DE LABORDERIE J,MOREAU S. Prediction of tonal ducted fan noise[J]. Journal of Sound and Vibration,2016,372: 105-132. doi: 10.1016/j.jsv.2016.02.032
    [3] PEAKE N,PARRY A B. Modern challenges facing turbomachinery aeroacoustics[J]. Annual Review of Fluid Mechanics,2012,44(1): 227-248. doi: 10.1146/annurev-fluid-120710-101231
    [4] BALOMBIN J,STAKOLICH E G. Effect of rotor-to-stator spacing on acoustic performance of a full-scale fan (QF-5) for turbofan engines[R]. NASA-TM-X-3103,1974.
    [5] SCHULTEN J. Sound generated by rotor wakes interacting with a leaned vane stator[J]. AIAA Journal,2012,20(10): 1352-1358.
    [6] 蒋永松,郑文涛,赵航,等. 风扇出口导向叶片低噪声设计Ⅰ: 方法与优化[J]. 航空学报,2019,40(10): 122955. JIANG Yongsong,ZHENG Wentao,ZHAO Hang,et al. Low noise design of fan outlet guide vane,part Ⅰ: method and optimization[J]. Acta Aeronautica et Astronautica Sinica,2019,40(10): 122955. (in Chinese

    JIANG Yongsong, ZHENG Wentao, ZHAO Hang, et al. Low noise design of fan outlet guide vane, part Ⅰ: method and optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122955. (in Chinese)
    [7] 郑文涛,蒋永松,赵航,等. 风扇出口导向叶片低噪声设计Ⅱ: 数值验证[J]. 航空学报,2019,40(10): 122956. ZHENG Wentao,JIANG Yongsong,ZHAO Hang,et al. Low noise design of fan outlet guide vane,part Ⅱ: numerical verifications[J]. Acta Aeronautica et Astronautica Sinica,2019,40(10): 122956. (in Chinese

    ZHENG Wentao, JIANG Yongsong, ZHAO Hang, et al. Low noise design of fan outlet guide vane, part Ⅱ: numerical verifications[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 122956. (in Chinese)
    [8] HSU S T,WO A M. Near-wake measurement in a rotor/stator axial compressor using slanted hot-wire technique[J]. Experiments in Fluids,1997,23(5): 441-444. doi: 10.1007/s003480050133
    [9] BIEDRON R,RUMSEY C,PODBOY G. Predicting the rotor-stator interaction acoustics of a ducted fan engine[R]. AIAA 2001-664,2001.
    [10] TOPOL D A. Rotor wake/stator interaction noise-predictions vs data[J]. Journal of Aircraft,1993,30(5): 728-735. doi: 10.2514/3.56895
    [11] ZHANG Weiguang,WANG Xiaoyu,JING Xiaodong,et al. Three-dimensional analysis of vane sweep effects on fan interaction noise[J]. Journal of Sound and Vibration,2017,391: 73-94. doi: 10.1016/j.jsv.2016.12.014
    [12] SANJOSE M,DAROUKH M,MAGNET W,et al. Tonal fan noise prediction and validation on the ANCF configuration[J]. Noise Control Engineering Journal,2015,63(6): 552-561. doi: 10.3397/1/376349
    [13] HE Li,NING W. Efficient approach for analysis of unsteady viscous flows in turbomachines[J]. AIAA Journal,1998,36: 2005-2012. doi: 10.2514/2.328
    [14] FERRANTE P,DI FRANCESCANTONIO P,HOFFER P A,et al. Integrated “CFD-Acoustic” computational approach to the simulation of aircraft fan noise[R]. ASME Paper GT2014-26429.
    [15] 药晓江,董景新,尚捷,等. 非线性谐波法在叶轮机械非定常计算中的应用[J]. 推进技术,2016,37(4): 632-639. YAO Xiaojiang,DONG Jingxin,SHANG Jie,et al. Application of non-linear harmonic in turbomarchinery 3D flow field unsteady simulation[J]. Journal of Propulsion Technology,2016,37(4): 632-639. (in Chinese doi: 10.13675/j.cnki.tjjs.2016.04.005

    YAO Xiaojiang, DONG Jingxin, SHANG Jie, et al. Application of non-linear harmonic in turbomarchinery 3D flow field unsteady simulation[J]. Journal of Propulsion Technology, 2016, 37(4): 632-639. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.04.005
    [16] CHOI J,CHOI T. Investigation of axial spacing and effect of interface location in a 1.5 stage transonic axial compressor[R]. ASME Paper GT2015-44020,2015.
    [17] SUTLIFF D. Advanced noise control fan: a 20-year retrospective[R]. NASA Technical Report No. GRC-E-DAA-TN32659,2016.
    [18] YANG Bing,WANG T Q. Investigation of the influence of liner hard-splices on duct radiation/propagation and mode scattering[J]. Journal of Sound and Vibration,2008,315(4/5): 1016-1034.
    [19] ENVIA E. Aeroacoustic analysis of a high-speed open rotor[J]. International Journal of Aeroacoustics,2015,14(3/4): 569-606.
    [20] FARASSAT F. Derivation of formulations 1 and 1A of farassat[R]. NASA/TM-2007-214853,2007.
    [21] DUNN M H. TBIEM3D: a computer program for predicting ducted fan engine noise [R]. NASA/CR-97-206232,1997.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  66
  • HTML浏览量:  24
  • PDF量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 网络出版日期:  2023-11-20

目录

    /

    返回文章
    返回