留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合动力分布式电推进飞行器总体设计

李嘉诚 盛汉霖 陈欣 史昊蓝 张天宏

李嘉诚, 盛汉霖, 陈欣, 等. 混合动力分布式电推进飞行器总体设计[J]. 航空动力学报, 2024, 39(9):20220693 doi: 10.13224/j.cnki.jasp.20220693
引用本文: 李嘉诚, 盛汉霖, 陈欣, 等. 混合动力分布式电推进飞行器总体设计[J]. 航空动力学报, 2024, 39(9):20220693 doi: 10.13224/j.cnki.jasp.20220693
LI Jiacheng, SHENG Hanlin, CHEN Xin, et al. System design of hybrid distributed electric propulsion aircraft[J]. Journal of Aerospace Power, 2024, 39(9):20220693 doi: 10.13224/j.cnki.jasp.20220693
Citation: LI Jiacheng, SHENG Hanlin, CHEN Xin, et al. System design of hybrid distributed electric propulsion aircraft[J]. Journal of Aerospace Power, 2024, 39(9):20220693 doi: 10.13224/j.cnki.jasp.20220693

混合动力分布式电推进飞行器总体设计

doi: 10.13224/j.cnki.jasp.20220693
基金项目: 国家自然科学基金(51906103 ,52176009)
详细信息
    作者简介:

    李嘉诚(1995-),男,博士生,研究方向为飞行/推进一体化控制领域

    通讯作者:

    盛汉霖(1986-),男,教授、博士生导师,博士,研究方向为航空发动机控制领域。E-mail:dreamshl@nuaa.edu.cn

  • 中图分类号: V236

System design of hybrid distributed electric propulsion aircraft

  • 摘要:

    以运-7飞机作为参考机型,进行了分布式电推进飞行器的总体设计与性能分析。设计了改型后的分布式电推进飞行器的动力系统,包括螺旋桨参数设计,机翼参数修正,电动机功率计算与选型,螺旋桨气动设计,最终完成混合动力系统的设计。完整地计算了改型后飞行器的各部分质量增减情况并分析其飞行性能,相比参考机型,航程与航时分别增加了540 km与1.2 h,增加幅度超过20%,最终进行了分布式电推进飞行器的三维建模与气动特性分析。为分布式电推进飞行器建模、仿真与控制及工程应用提供了理论依据。

     

  • 图 1  运-7运输机

    Figure 1.  Transport plane Y-7

    图 2  本研究技术路线图

    Figure 2.  Technology roadmap of this research

    图 3  桨盘前后流体流速的变化

    Figure 3.  Fluid velocity before and after the propeller disk

    图 4  起飞阶段剖面示意图

    Figure 4.  Diagrammatic sketch of the takeoff phase

    图 5  起飞场道阶段剖面示意图

    Figure 5.  Diagrammatic sketch of the takeoff runway phase

    图 6  EMRAX系列电动机

    Figure 6.  EMRAX series motors

    图 7  螺旋桨三维造型图

    Figure 7.  Three-dimensional modeling of the propeller

    图 8  计算航程和续航时间的典型飞行剖面

    Figure 8.  Typical flight profile for calculating range and endurance

    图 9  分布式电推进飞行器三维模型

    Figure 9.  Three-dimensional model of the distributed electric propulsion aircraft

    图 10  运-7飞机与分布式电推进飞行器机翼对比

    Figure 10.  Wing comparison between the Y-7 aircraft and the distributed electric propulsion aircraft

    图 11  机身压强分布(空速为125 m/s,迎角为2°)

    Figure 11.  Pressure distribution of the airframe (airspeed of 125 m/s, angle of attack of 2°)

    图 12  机翼压强分布(空速为125 m/s,迎角为2°)

    Figure 12.  Pressure distribution of the wing (airspeed of 125 m/s, angle of attack of 2°)

    图 13  垂直尾翼压强分布(空速为125 m/s,侧滑角为0°)

    Figure 13.  Pressure distribution of the vertical tail (airspeed of 125 m/s, sideslip angle of 0°)

    图 14  水平尾翼压强分布(空速为125 m/s,迎角为2°)

    Figure 14.  Pressure distribution of the horizontal tail (airspeed of 125 m/s, angle of attack of 2°)

    表  1  参考机型Y-7基本飞行参数

    Table  1.   Parameters of the reference aircraft Y-7

    参数数值
    翼展/m29.2
    展弦比11.7
    机翼面积/m274.98
    机长/m23.7
    机高/m8.55
    机身宽度/m2.9
    机身高度/m2.50
    空质量/kg13 300
    最大起飞质量/kg21 800
    最大载油量/kg3 950
    最大燃油航程/km2 400
    发动机单台功率/kW2 050.7
    单台发动机质量/kg481
    正常巡航速度/(km/h)450
    着陆速度/(km/h)165
    爬升率/(m/min)114
    起飞滑跑距离/m600
    起飞离地速度/(km/h)200
    螺旋桨直径/m3.90
    螺旋桨转速/(r/min)1 200
    下载: 导出CSV

    表  2  EMRAX电动机输出特性

    Table  2.   Output characteristics of EMRAX motors

    参数 型号
    188 208 228 268 348
    最大可持续
    输出功率/kW
    32 40 55 110 210
    峰值功率/kW 60 75 100 230 380
    最大可持续
    输出扭矩/(N·m)
    50 80 120 250 500
    质量/kg 7.2 9.4 12.3 20.3 40
    下载: 导出CSV

    表  3  机身气动力随迎角变化

    Table  3.   Airframe aerodynamic force with the change of angle of attack

    迎角/(°) 升力/N 阻力/N
    −6 8730 4473.6
    −4 6083 3788.5
    −2 4125 3311.6
    0 2707 3012.7
    2 1594 2843.5
    4 −623 2775.2
    6 352 2790.5
    8 1578 2905.4
    10 3364 3163.8
    下载: 导出CSV

    表  4  机身气动力随侧滑角变化

    Table  4.   Airframe aerodynamic force with the change of sideslip angle

    侧滑角/(°) 侧向力/N 阻力/N
    0 0 3012.7
    −2 377 3040.8
    −4 877 3125.9
    −6 1650 3277.5
    下载: 导出CSV

    表  5  机翼气动力随迎角变化

    Table  5.   Wing aerodynamic force with the change of angle of attack

    迎角/(°) 升力/N 阻力/N
    −6 152230 6976
    −4 100690 4339
    −2 41807 2777
    0 21163 2249
    2 85730 2666
    4 149850 3837
    6 210610 6147
    8 263410 9445
    下载: 导出CSV

    表  6  垂直尾翼气动力随侧滑角变化

    Table  6.   Vertical tail aerodynamic force with the change of sideslip angle

    侧滑角/(°) 侧向力/N 阻力/N
    0 0 836
    −2 8983 985
    −4 18089 1432
    −6 27489 2205
    −8 37233 3332
    下载: 导出CSV

    表  7  水平尾翼气动力随迎角变化

    Table  7.   Horizontal tail aerodynamic force with the change of angle of attack

    迎角/(°) 升力/N 阻力/N
    −4 37839 1824.5
    −2 18763 1049.7
    0 523.05 803.09
    2 19871 1071
    4 39175 1873.4
    6 58278 3251.9
    8 76173 5180.6
    下载: 导出CSV

    表  8  螺旋桨气动特性

    Table  8.   Aerodynamic characteristics of propeller

    转速/
    (r/min)
    总距/
    (°)
    拉力/
    N
    功率/
    kW
    尾流速度/
    (m/s)
    效率/
    %
    2500 12 380 56.3 127.6 86.1
    2500 13 586 82.1 128.7 91.9
    2500 14 802 110 129.8 94.6
    2500 15 1020 139 131.0 96.1
    下载: 导出CSV
  • [1] 饶崇,张铁军,魏闯,等. 一种分布式电动飞机螺旋桨滑流影响机理[J]. 航空学报,2021,42(增刊1): 157-167. RAO Chong,ZHANG Tiejun,WEI Chuang,et al. Influence mechanism of propeller slipstream on wing of a distributed electric aircraft scheme[J]. Acta Aeronautica et Astronautica Sinica,2021,42(Suppl. 1): 157-167. (in Chinese

    RAO Chong, ZHANG Tiejun, WEI Chuang, et al. Influence mechanism of propeller slipstream on wing of a distributed electric aircraft scheme[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(Suppl. 1): 157-167. (in Chinese)
    [2] KIRNER R,RAFFAELLI L,ROLT A,et al. An assessment of distributed propulsion: Part B advanced propulsion system architectures for blended wing body aircraft configurations[J]. Aerospace Science and Technology,2016,50: 212-219.
    [3] 孔祥浩,张卓然,陆嘉伟,等. 分布式电推进飞机电力系统研究综述[J]. 航空学报,2018,39(1): 021651. KONG Xianghao,ZHANG Zhuoran,LU Jiawei,et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2018,39(1): 021651. (in Chinese

    KONG Xianghao, ZHANG Zhuoran, LU Jiawei, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651. (in Chinese)
    [4] DEERE K A,VIKEN J K,VIKEN S,et al. Computational analysis of a wing designed for the X-57 distributed electric propulsion aircraft[R]. AIAA 2017-3923,2017.
    [5] CONNOLLY J W,CHAPMAN J W,STALCUP E J,et al. Modeling and control design for a turboelectric single aisle aircraft propulsion system[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway,US: IEEE,2018: 1-19.
    [6] NGUYEN N T,REYNOLDS K,TING E,et al. Distributed propulsion aircraft with aeroelastic wing shaping control for improved aerodynamic efficiency[J]. Journal of Aircraft,2018,55(3): 1122-1140.
    [7] ZHANG Jing,KANG Wenwen,LI Ang,et al. Integrated flight/propulsion optimal control for DPC aircraft based on the GA-RPS algorithm[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2016,230(1): 157-171.
    [8] 雷涛,孔德林,王润龙,等. 分布式电推进飞机动力系统评估优化方法[J]. 航空学报,2021,42(6): 624047. LEI Tao,KONG Delin,WANG Runlong,et al. Evaluation and optimization method for power systems of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6): 624047. (in Chinese

    LEI Tao, KONG Delin, WANG Runlong, et al. Evaluation and optimization method for power systems of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624047. (in Chinese)
    [9] 达兴亚,范召林,熊能,等. 分布式边界层吸入推进系统的建模与分析[J]. 航空学报,2018,39(7): 122048. DA Xingya,FAN Zhaolin,XIONG Neng,et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica,2018,39(7): 122048. (in Chinese

    DA Xingya, FAN Zhaolin, XIONG Neng, et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122048. (in Chinese)
    [10] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006.
    [11] 丁兴国,陈昌荣. 民航运输机飞行性能与计划[M]. 北京: 清华大学出版社,2012.
    [12] 刘静,郗超. 民用运输类飞机最大可用速率抬前轮试飞技术研究[J]. 航空科学技术,2015,26(5): 44-47. LIU Jing,XI Chao. Flight test technology of maximum practicable rotation rate for civil transport category airplanes[J]. Aeronautical Science & Technology,2015,26(5): 44-47. (in Chinese

    LIU Jing, XI Chao. Flight test technology of maximum practicable rotation rate for civil transport category airplanes[J]. Aeronautical Science & Technology, 2015, 26(5): 44-47. (in Chinese)
    [13] BORER N K,PATTERSON M D,VIKEN J K,et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[R]. AIAA 2016-3920,2016.
    [14] STOLL A M,BEVIRT J,MOORE M D,et al. Drag reduction through distributed electric propulsion [R]. AIAA 2014-2851,2014.
    [15] JOHNSON W. NDARC NASA design and analysis of rotorcraft[R]. Moffett Field, CA,US: NASA Ames Research Center ARC-E-DAA-TN46522,2017.
    [16] 吴炎烜,范宁军,KOMAROV V A. 机翼载荷传递结构的质量估算[J]. 北京理工大学学报,2008,28(1): 19-23. WU Yanxuan,FAN Ningjun,KOMAROV V A. Mass evaluation for load carrying structures of aircraft wing[J]. Transactions of Beijing Institute of Technology,2008,28(1): 19-23. (in Chinese

    WU Yanxuan, FAN Ningjun, KOMAROV V A. Mass evaluation for load carrying structures of aircraft wing[J]. Transactions of Beijing Institute of Technology, 2008, 28(1): 19-23. (in Chinese)
    [17] 刘虎. 飞机总体设计[M]. 北京: 北京航空航天大学出版社,2019.
    [18] 史永运,钟易成,邓君湘,等. 涡轮螺旋桨动力飞机桨发匹配性能仿真研究[J]. 机械制造与自动化,2019,48(4): 116-120. SHI Yongyun,ZHONG Yicheng,DENG Junxiang,et al. Research on prop-engine cooperation performance simulation of propeller powered aircraft[J]. Machine Building & Automation,2019,48(4): 116-120. (in Chinese

    SHI Yongyun, ZHONG Yicheng, DENG Junxiang, et al. Research on prop-engine cooperation performance simulation of propeller powered aircraft[J]. Machine Building & Automation, 2019, 48(4): 116-120. (in Chinese)
    [19] 刘远强,郭金锁,项松,等. 基于片条理论的螺旋桨性能计算[J]. 沈阳航空航天大学学报,2013,30(1): 43-46. LIU Yuanqiang,GUO Jinsuo,XIANG Song,et al. Aerodynamic performances calculation of propellers based on standard strip analysis[J]. Journal of Shenyang Aerospace University,2013,30(1): 43-46. (in Chinese

    LIU Yuanqiang, GUO Jinsuo, XIANG Song, et al. Aerodynamic performances calculation of propellers based on standard strip analysis[J]. Journal of Shenyang Aerospace University, 2013, 30(1): 43-46. (in Chinese)
    [20] 中国航空工业总公司. 航空发动机手册[M]. 北京: 航空工业出版社,2001.
    [21] 黄波. 无人直升机混合动力驱动技术研究[D]. 成都: 电子科技大学,2018. HUANG Bo. Research on hybrid power driving technology of unmanned helicopter[D]. Chengdu: University of Electronic Science and Technology of China,2018. (in Chinese

    HUANG Bo. Research on hybrid power driving technology of unmanned helicopter[D]. Chengdu: University of Electronic Science and Technology of China, 2018. (in Chinese)
    [22] JOHNSON W,SILVA C,SOLIS E. Concept vehicles for VTOL air taxi operations[R]. Moffett Field, CA,US: NASA Ames Research Center ARC-E-DAA-TN50731, 2018.
    [23] 薛奎举. 分布式油电组合动力无人机设计及性能分析[D]. 沈阳: 沈阳航空航天大学,2018. XUE Kuiju. Design and performance analysis of distributed oil-electricity combined UAV[D]. Shenyang: Shenyang Aerospace University,2018. (in Chinese

    XUE Kuiju. Design and performance analysis of distributed oil-electricity combined UAV[D]. Shenyang: Shenyang Aerospace University, 2018. (in Chinese)
    [24] 沈炎宾,陈立桅. 高能量密度动力电池材料电化学[J]. 科学通报,2020,65(增刊1): 117-126. SHEN Yanbin,CHEN Liwei. Materials electrochemistry for high energy density power batteries[J]. Chinese Science Bulletin,2020,65(Suppl. 1): 117-126. (in Chinese

    SHEN Yanbin, CHEN Liwei. Materials electrochemistry for high energy density power batteries[J]. Chinese Science Bulletin, 2020, 65(Suppl. 1): 117-126. (in Chinese)
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  343
  • HTML浏览量:  437
  • PDF量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 网络出版日期:  2023-11-27

目录

    /

    返回文章
    返回