System design of hybrid distributed electric propulsion aircraft
-
摘要:
以运-7飞机作为参考机型,进行了分布式电推进飞行器的总体设计与性能分析。设计了改型后的分布式电推进飞行器的动力系统,包括螺旋桨参数设计,机翼参数修正,电动机功率计算与选型,螺旋桨气动设计,最终完成混合动力系统的设计。完整地计算了改型后飞行器的各部分质量增减情况并分析其飞行性能,相比参考机型,航程与航时分别增加了540 km与1.2 h,增加幅度超过20%,最终进行了分布式电推进飞行器的三维建模与气动特性分析。为分布式电推进飞行器建模、仿真与控制及工程应用提供了理论依据。
Abstract:The Y-7 aircraft was used as the reference model to carry out the overall design and performance analysis of the distributed electric propulsion aircraft. The power system of the distributed electric propulsion aircraft was designed, including design of propeller parameters, correction of wing parameters, calculation of motor power and type selection and aerodynamic design of propeller, and finally the design of hybrid power system was completed. The mass increase and decrease of each part of the distributed electric propulsion aircraft were completely calculated and its flight performance was analyzed. Compared with the reference model, the range and duration increased by 540 km and 1.2 h respectively, up by 20%. Finally, the three-dimensional modeling was established and aerodynamic characteristics of the distributed electric propulsion aircraft were analyzed. The result provides a theoretical basis for the modeling, simulation and control of distributed electric propulsion aircraft and its engineering applications.
-
表 1 参考机型Y-7基本飞行参数
Table 1. Parameters of the reference aircraft Y-7
参数 数值 翼展/m 29.2 展弦比 11.7 机翼面积/m2 74.98 机长/m 23.7 机高/m 8.55 机身宽度/m 2.9 机身高度/m 2.50 空质量/kg 13 300 最大起飞质量/kg 21 800 最大载油量/kg 3 950 最大燃油航程/km 2 400 发动机单台功率/kW 2 050.7 单台发动机质量/kg 481 正常巡航速度/(km/h) 450 着陆速度/(km/h) 165 爬升率/(m/min) 114 起飞滑跑距离/m 600 起飞离地速度/(km/h) 200 螺旋桨直径/m 3.90 螺旋桨转速/(r/min) 1 200 表 2 EMRAX电动机输出特性
Table 2. Output characteristics of EMRAX motors
参数 型号 188 208 228 268 348 最大可持续
输出功率/kW32 40 55 110 210 峰值功率/kW 60 75 100 230 380 最大可持续
输出扭矩/(N·m)50 80 120 250 500 质量/kg 7.2 9.4 12.3 20.3 40 表 3 机身气动力随迎角变化
Table 3. Airframe aerodynamic force with the change of angle of attack
迎角/(°) 升力/N 阻力/N −6 − 8730 4473.6 −4 − 6083 3788.5 −2 − 4125 3311.6 0 − 2707 3012.7 2 − 1594 2843.5 4 −623 2775.2 6 352 2790.5 8 1578 2905.4 10 3364 3163.8 表 4 机身气动力随侧滑角变化
Table 4. Airframe aerodynamic force with the change of sideslip angle
侧滑角/(°) 侧向力/N 阻力/N 0 0 3012.7 −2 377 3040.8 −4 877 3125.9 −6 1650 3277.5 表 5 机翼气动力随迎角变化
Table 5. Wing aerodynamic force with the change of angle of attack
迎角/(°) 升力/N 阻力/N −6 − 152230 6976 −4 − 100690 4339 −2 − 41807 2777 0 21163 2249 2 85730 2666 4 149850 3837 6 210610 6147 8 263410 9445 表 6 垂直尾翼气动力随侧滑角变化
Table 6. Vertical tail aerodynamic force with the change of sideslip angle
侧滑角/(°) 侧向力/N 阻力/N 0 0 836 −2 8983 985 −4 18089 1432 −6 27489 2205 −8 37233 3332 表 7 水平尾翼气动力随迎角变化
Table 7. Horizontal tail aerodynamic force with the change of angle of attack
迎角/(°) 升力/N 阻力/N −4 − 37839 1824.5 −2 − 18763 1049.7 0 523.05 803.09 2 19871 1071 4 39175 1873.4 6 58278 3251.9 8 76173 5180.6 表 8 螺旋桨气动特性
Table 8. Aerodynamic characteristics of propeller
转速/
(r/min)总距/
(°)拉力/
N功率/
kW尾流速度/
(m/s)效率/
%2500 12 380 56.3 127.6 86.1 2500 13 586 82.1 128.7 91.9 2500 14 802 110 129.8 94.6 2500 15 1020 139 131.0 96.1 -
[1] 饶崇,张铁军,魏闯,等. 一种分布式电动飞机螺旋桨滑流影响机理[J]. 航空学报,2021,42(增刊1): 157-167. RAO Chong,ZHANG Tiejun,WEI Chuang,et al. Influence mechanism of propeller slipstream on wing of a distributed electric aircraft scheme[J]. Acta Aeronautica et Astronautica Sinica,2021,42(Suppl. 1): 157-167. (in ChineseRAO Chong, ZHANG Tiejun, WEI Chuang, et al. Influence mechanism of propeller slipstream on wing of a distributed electric aircraft scheme[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(Suppl. 1): 157-167. (in Chinese) [2] KIRNER R,RAFFAELLI L,ROLT A,et al. An assessment of distributed propulsion: Part B advanced propulsion system architectures for blended wing body aircraft configurations[J]. Aerospace Science and Technology,2016,50: 212-219. [3] 孔祥浩,张卓然,陆嘉伟,等. 分布式电推进飞机电力系统研究综述[J]. 航空学报,2018,39(1): 021651. KONG Xianghao,ZHANG Zhuoran,LU Jiawei,et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2018,39(1): 021651. (in ChineseKONG Xianghao, ZHANG Zhuoran, LU Jiawei, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651. (in Chinese) [4] DEERE K A,VIKEN J K,VIKEN S,et al. Computational analysis of a wing designed for the X-57 distributed electric propulsion aircraft[R]. AIAA 2017-3923,2017. [5] CONNOLLY J W,CHAPMAN J W,STALCUP E J,et al. Modeling and control design for a turboelectric single aisle aircraft propulsion system[C]//2018 AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway,US: IEEE,2018: 1-19. [6] NGUYEN N T,REYNOLDS K,TING E,et al. Distributed propulsion aircraft with aeroelastic wing shaping control for improved aerodynamic efficiency[J]. Journal of Aircraft,2018,55(3): 1122-1140. [7] ZHANG Jing,KANG Wenwen,LI Ang,et al. Integrated flight/propulsion optimal control for DPC aircraft based on the GA-RPS algorithm[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2016,230(1): 157-171. [8] 雷涛,孔德林,王润龙,等. 分布式电推进飞机动力系统评估优化方法[J]. 航空学报,2021,42(6): 624047. LEI Tao,KONG Delin,WANG Runlong,et al. Evaluation and optimization method for power systems of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(6): 624047. (in ChineseLEI Tao, KONG Delin, WANG Runlong, et al. Evaluation and optimization method for power systems of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624047. (in Chinese) [9] 达兴亚,范召林,熊能,等. 分布式边界层吸入推进系统的建模与分析[J]. 航空学报,2018,39(7): 122048. DA Xingya,FAN Zhaolin,XIONG Neng,et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica,2018,39(7): 122048. (in ChineseDA Xingya, FAN Zhaolin, XIONG Neng, et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122048. (in Chinese) [10] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006. [11] 丁兴国,陈昌荣. 民航运输机飞行性能与计划[M]. 北京: 清华大学出版社,2012. [12] 刘静,郗超. 民用运输类飞机最大可用速率抬前轮试飞技术研究[J]. 航空科学技术,2015,26(5): 44-47. LIU Jing,XI Chao. Flight test technology of maximum practicable rotation rate for civil transport category airplanes[J]. Aeronautical Science & Technology,2015,26(5): 44-47. (in ChineseLIU Jing, XI Chao. Flight test technology of maximum practicable rotation rate for civil transport category airplanes[J]. Aeronautical Science & Technology, 2015, 26(5): 44-47. (in Chinese) [13] BORER N K,PATTERSON M D,VIKEN J K,et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[R]. AIAA 2016-3920,2016. [14] STOLL A M,BEVIRT J,MOORE M D,et al. Drag reduction through distributed electric propulsion [R]. AIAA 2014-2851,2014. [15] JOHNSON W. NDARC NASA design and analysis of rotorcraft[R]. Moffett Field, CA,US: NASA Ames Research Center ARC-E-DAA-TN46522,2017. [16] 吴炎烜,范宁军,KOMAROV V A. 机翼载荷传递结构的质量估算[J]. 北京理工大学学报,2008,28(1): 19-23. WU Yanxuan,FAN Ningjun,KOMAROV V A. Mass evaluation for load carrying structures of aircraft wing[J]. Transactions of Beijing Institute of Technology,2008,28(1): 19-23. (in ChineseWU Yanxuan, FAN Ningjun, KOMAROV V A. Mass evaluation for load carrying structures of aircraft wing[J]. Transactions of Beijing Institute of Technology, 2008, 28(1): 19-23. (in Chinese) [17] 刘虎. 飞机总体设计[M]. 北京: 北京航空航天大学出版社,2019. [18] 史永运,钟易成,邓君湘,等. 涡轮螺旋桨动力飞机桨发匹配性能仿真研究[J]. 机械制造与自动化,2019,48(4): 116-120. SHI Yongyun,ZHONG Yicheng,DENG Junxiang,et al. Research on prop-engine cooperation performance simulation of propeller powered aircraft[J]. Machine Building & Automation,2019,48(4): 116-120. (in ChineseSHI Yongyun, ZHONG Yicheng, DENG Junxiang, et al. Research on prop-engine cooperation performance simulation of propeller powered aircraft[J]. Machine Building & Automation, 2019, 48(4): 116-120. (in Chinese) [19] 刘远强,郭金锁,项松,等. 基于片条理论的螺旋桨性能计算[J]. 沈阳航空航天大学学报,2013,30(1): 43-46. LIU Yuanqiang,GUO Jinsuo,XIANG Song,et al. Aerodynamic performances calculation of propellers based on standard strip analysis[J]. Journal of Shenyang Aerospace University,2013,30(1): 43-46. (in ChineseLIU Yuanqiang, GUO Jinsuo, XIANG Song, et al. Aerodynamic performances calculation of propellers based on standard strip analysis[J]. Journal of Shenyang Aerospace University, 2013, 30(1): 43-46. (in Chinese) [20] 中国航空工业总公司. 航空发动机手册[M]. 北京: 航空工业出版社,2001. [21] 黄波. 无人直升机混合动力驱动技术研究[D]. 成都: 电子科技大学,2018. HUANG Bo. Research on hybrid power driving technology of unmanned helicopter[D]. Chengdu: University of Electronic Science and Technology of China,2018. (in ChineseHUANG Bo. Research on hybrid power driving technology of unmanned helicopter[D]. Chengdu: University of Electronic Science and Technology of China, 2018. (in Chinese) [22] JOHNSON W,SILVA C,SOLIS E. Concept vehicles for VTOL air taxi operations[R]. Moffett Field, CA,US: NASA Ames Research Center ARC-E-DAA-TN50731, 2018. [23] 薛奎举. 分布式油电组合动力无人机设计及性能分析[D]. 沈阳: 沈阳航空航天大学,2018. XUE Kuiju. Design and performance analysis of distributed oil-electricity combined UAV[D]. Shenyang: Shenyang Aerospace University,2018. (in ChineseXUE Kuiju. Design and performance analysis of distributed oil-electricity combined UAV[D]. Shenyang: Shenyang Aerospace University, 2018. (in Chinese) [24] 沈炎宾,陈立桅. 高能量密度动力电池材料电化学[J]. 科学通报,2020,65(增刊1): 117-126. SHEN Yanbin,CHEN Liwei. Materials electrochemistry for high energy density power batteries[J]. Chinese Science Bulletin,2020,65(Suppl. 1): 117-126. (in ChineseSHEN Yanbin, CHEN Liwei. Materials electrochemistry for high energy density power batteries[J]. Chinese Science Bulletin, 2020, 65(Suppl. 1): 117-126. (in Chinese) -