Numerical study on the sealing performance of shape memory alloy beam seal
-
摘要:
针对一种阴接头密封梁具有椭圆弧凹槽的形状记忆合金梁式管接头,利用ABAQUS软件建立考虑管内流体压力和温度的弹塑性有限元热力耦合模型,数值模拟得到阴、阳接头间的接触带宽和接触应力分布。基于逾渗理论与微观粗糙密封界面有限元接触分析,计算得到形状记忆合金材料密封界面泄漏概率为零的临界接触应力。结合第一道密封的接触应力分布,以
S 指数作为形状记忆合金梁式管接头密封性能的评价指标,数值模拟了预紧力、管内流体压力和温度对形状记忆合金梁式管接头密封性能影响。结果表明:在装配拧紧力矩范围内形状记忆合金梁式管接头密封性能随着预紧力增大而增强;密封性能随着管内流体压力的升高会提高,具有良好的自封性;在−50~200 ℃的管内流体温度范围内密封性能基本稳定,满足密封要求。数值分析表明在相同工作条件下形状记忆合金梁式管接头相比于不锈钢和钛合金梁式管接头具有更优的密封性能。Abstract:In view of a shape memory alloy beam seal with elliptical arc groove in the female connector, the elastoplastic finite element thermodynamic coupling model considering the fluid pressure and temperature in the pipe was established by using ABAQUS software. The contact bandwidth and contact stress distribution between the female and male connectors were obtained by numerical simulation. Based on percolation theory and finite element contact analysis of micro rough sealing interface, the critical contact stress with zero leakage probability of shape memory alloy sealing interface was calculated. Combined with the contact stress distribution on the primary seal,
S index was used as the evaluation criterion of the sealing performance of shape memory alloy beam seal. The effects of preload, fluid pressure and temperature on the sealing performance of shape memory alloy beam seal were numerically simulated. The results showed that within the range of assembly tightening torque, the sealing performance increased with the increase of preload; the sealing performance increased with the increase of fluid pressure in the pipe, indicating that it had good self-sealing feature; the sealing performance was basically stable within the fluid temperature range of −50— 200 ℃, which could meet the sealing requirements. Numerical analysis showed that shape memory alloy beam seal had better sealing performance than stainless steel and titanium alloy beam seal under the same working conditions. -
表 1 SMA梁式管接头结构参数
Table 1. Geometric parameters of SMA beam seal
结构参数 数值 U形梁椭圆弧凹槽的长轴a/mm 1.66 U形梁椭圆弧凹槽的短半轴b/mm 0.30 第一道密封名义接触带宽c/mm 0.49 阳接头壁厚d/mm 2.70 U形口轴向长度e/mm 1.04 密封梁截面宽度h/mm 0.50 阴接头壁厚p/mm 1.55 锥面角α/(°) 8.50 阴接头倒角角度β/(°) 45.0 U形梁底部与阴接头外径的距离δ/mm 1.10 U形梁与径向的夹角θ/(°) 15.0 表 2 NiTiFe塑性本构关系
Table 2. Plastic constitutive relationship of NiTiFe
真实应力/MPa 塑性应变 真实应力/MPa 塑性应变 600 0 750 0.03 650 0.01 800 0.06 700 0.02 850 0.1 表 3 NiTiFe材料参数
Table 3. Material parameters of NiTiFe
密度/(g/cm3) 比热容/(J/(g·℃)) 热膨胀系数/10−5 ℃−1 泊松比 6.44 6 1.1 0.33 表 4 NiTiFe各温度下的材料参数
Table 4. Material parameters of NiTiFe at various temperatures
温度/℃ 导热系数/(W/(m·℃)) 弹性模量/GPa −50~0 20.09 91.27 0~50 20.90 89.00 50~100 21.71 86.28 100~150 22.68 84.47 150~200 23.49 81.75 200~250 24.46 79.48 表 5 304不锈钢塑性本构关系
Table 5. Plastic constitutive relationship of 304 stainless steel
真实应力/MPa 塑性应变 真实应力/MPa 塑性应变 418 0 882 0.25 500 0.01581 908 0.35 605 0.02983 921 0.45 695 0.056 932 0.55 780 0.095 955 0.65 829 0.15 988 0.75 表 6 TC4钛合金塑性本构关系
Table 6. Plastic constitutive relationship of TC4 titanium alloy
真实应力/MPa 塑性应变 900.0 0 922.5 0.001 945.0 0.002 967.5 0.003 990.0 0.004 -
[1] 欧阳小平,方旭,朱莹,等. 航空液压管接头综述[J]. 中国机械工程,2015,26(16): 2262-2271. doi: 10.3969/j.issn.1004-132X.2015.16.023OUYANG Xiaoping,FANG Xu,ZHU Ying,et al. Overview of aviation hydraulic fitting[J]. China Mechanical Engineering,2015,26(16): 2262-2271. (in Chinese) doi: 10.3969/j.issn.1004-132X.2015.16.023 [2] JEON J Y,KIM B T. A study on contact characteristics by the geometry variation of beam seal fitting of an aircraft fuel hose[J]. Journal of the Korean Society of Manufacturing Process Engineers,2013,12(6): 101-108. doi: 10.14775/ksmpe.2013.12.6.101 [3] 李晓东. 可分离式航空液压管接头密封特性研究[D]. 辽宁 大连: 大连理工大学, 2018.LI Xiaodong. Study on sealing characteristics of separable aviation hydraulic pipe fittings[D]. Dalian Liaoning: Dalian University of Technology, 2018. (in Chinese) [4] 崔颖,于颖嘉,王永亮,等. 一种梁式管接头密封性能与结构参数敏感性分析[J]. 机械工程学报,2021,57(3): 147-155. doi: 10.3901/JME.2021.03.147CUI Ying,YU Yingjia,WANG Yongliang,et al. Sealing performance and sensitivity analysis of structure parameters for a new beam seal[J]. Journal of Mechanical Engineering,2021,57(3): 147-155. (in Chinese) doi: 10.3901/JME.2021.03.147 [5] 闫洋洋,庄保顺,高培鑫,等. 航空管路接头密封特性及流体温度影响[J]. 航空动力学报,2019,34(11): 2414-2422. doi: 10.13224/j.cnki.jasp.2019.11.013YAN Yangyang,ZHUANG Baoshun,GAO Peixin,et al. Sealing characteristics and fluid temperature influence of aviation pipeline joints[J]. Journal of Aerospace Power,2019,34(11): 2414-2422. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.11.013 [6] CUI Ying, YU Yingjia. Parameter sensitivity analysis of a beam seal based on a new sealing criterion and orthogonal array method[C]//ASME 2020 Pressure Vessels and Piping Conference. Minneapolis, US: ASME, 2020: 4-14. [7] 崔颖,于颖嘉,张宏翔,等. 钛合金梁式管接头密封性能的结构优化设计[J]. 哈尔滨工业大学学报,2022,54(1): 73-79. doi: 10.11918/202108015CUI Ying,YU Yingjia,ZHANG Hongxiang,et al. Structural optimization design of sealing performance for titanium alloy beam seal[J]. Journal of Harbin Institute of Technology,2022,54(1): 73-79. (in Chinese) doi: 10.11918/202108015 [8] 李瀚宇, 周震涛, 唐江龙. 形状记忆合金宽温区超弹性的研究进展[J]. 热加工工艺, 2021, 50(17): 1-5, 11.LI Hanyu, ZHOU Zhentao, TANG Jianglong. Research progress on superelasticity of shape memory alloy at wide temperature zone[J]. Hot Working Technology, 201, 50(17): 1-5, 11. (in Chinese) [9] 牛豪杰, 林成新. 形状记忆合金的应用现状综述[J]. 天津理工大学学报, 2020, 36(4): 1-6.NIU Haojie, LIN Chengxin. Review of shape memory alloy application status[J]. Journal of Tianjin University of Technology, 2020, 36 (4): 1-6. (in Chinese) [10] 任文杰,王利强,穆蒙蒙. SMA阻尼器控制单自由度结构在地震激励下的平稳随机振动研究[J]. 工程力学,2016,33(4): 98-103.REN Wenjie,WANG Liqiang,MU Mengmeng. Study on steady random vibration of single-dof structure controlled by SMA damper under seismic excitation[J]. Engineering Mechanics,2016,33(4): 98-103. (in Chinese) [11] 康泽天,周博,薛世峰. 形状记忆合金管接头热机耦合行为的有限元数值模拟[J]. 机械工程学报,2018,54(18): 68-75. doi: 10.3901/JME.2018.18.068KANG Zetian,ZHOU Bo,XUE Shifeng. Research progress on superelasticity of shape memory alloy at wide temperature zone[J]. Journal of Mechanical Engineering,2018,54(18): 68-75. (in Chinese) doi: 10.3901/JME.2018.18.068 [12] 刘雪峰,何勇,毕重武,等. 镍钛形状记忆合金线材无模拉拔成形过程的电磁场和温度场模拟[J]. 稀有金属,2005,29(5): 762-767. doi: 10.3969/j.issn.0258-7076.2005.05.037LIU Xuefeng,HE Yong,BI Zhongwu,et al. Simulation of electromagnetic field and temperature field in formless drawing of nickel-titanium shape memory alloy wire[J]. Rare Metals,2005,29(5): 762-767. (in Chinese) doi: 10.3969/j.issn.0258-7076.2005.05.037 [13] PERSSON B,ALBOHR O,CRETON C,et al. Contact area between a viscoelastic solid and a hard, randomly rough, substrate[J]. The Journal of Chemical Physics,2004,120(18): 8779-8793. doi: 10.1063/1.1697376 [14] 崔颖, 孙唯一, 于颖嘉, 等. 基于正交实验的粗糙表面接触密封性能预测方法[J]. 大连海事大学学报, 2019, 45(3): 53-58CUI Ying, SUN Weiyi, YU Yingjia, et al. Prediction method of contact sealing performance of rough surface based on orthogonal experiments[J]. Journal of Dalian Maritime University, 2019, 45(3): 53-58. (in Chinese) [15] GREENWOOD J A,TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers,1970,185(1): 625-633. doi: 10.1243/PIME_PROC_1970_185_069_02 [16] SHI X,ZOU Y. A comparative study on equivalent modeling of rough surfaces contact[J]. Journal of Tribology,2018,140(4): 402-424. [17] US-SAE. Fitting, tube, fluid systems, separable, beam seal, 3 000/4 000 psi, general specification: AS85421(R) [S]. Warrendale, US: SAE, 2018: 1-5. [18] 熊影辉,丁晓宇,刘检华,等. 扩口式管接头拧紧过程扭拉关系研究[J]. 润滑与密封,2017,42(5): 46-52. doi: 10.3969/j.issn.0254-0150.2017.05.009XIONG Yinghui,DING Xiaoyu,LIU Jianhua,et al. Study on relationship between preload and tightening torque of flared coupling in tightening process[J]. Lubrication Engineering,2017,42(5): 46-52. (in Chinese) doi: 10.3969/j.issn.0254-0150.2017.05.009 [19] 陈志伟,敬云兵,甘春雷,等. Fe含量对等原子比NiTi形状记忆合金微观组织、相变行为和显微硬度的影响[J]. 材料研究与应用,2021,15(2): 118-124. doi: 10.3969/j.issn.1673-9981.2021.02.006CHEN Zhiwei,JING Yunbing,GAN Chunlei,et al. Effect of Fe content on microstructure, phase transformation behavior and microhardness of the equiatomic NiTi shape memory alloy[J]. Materials Research and Application,2021,15(2): 118-124. (in Chinese) doi: 10.3969/j.issn.1673-9981.2021.02.006