留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

形状记忆合金梁式管接头密封性能数值研究

崔颖 王大玮 于颖嘉 张宏翔 刘志远

崔颖, 王大玮, 于颖嘉, 等. 形状记忆合金梁式管接头密封性能数值研究[J]. 航空动力学报, 2023, 38(3):513-521 doi: 10.13224/j.cnki.jasp.20220700
引用本文: 崔颖, 王大玮, 于颖嘉, 等. 形状记忆合金梁式管接头密封性能数值研究[J]. 航空动力学报, 2023, 38(3):513-521 doi: 10.13224/j.cnki.jasp.20220700
CUI Ying, WANG Dawei, YU Yingjia, et al. Numerical study on the sealing performance of shape memory alloy beam seal[J]. Journal of Aerospace Power, 2023, 38(3):513-521 doi: 10.13224/j.cnki.jasp.20220700
Citation: CUI Ying, WANG Dawei, YU Yingjia, et al. Numerical study on the sealing performance of shape memory alloy beam seal[J]. Journal of Aerospace Power, 2023, 38(3):513-521 doi: 10.13224/j.cnki.jasp.20220700

形状记忆合金梁式管接头密封性能数值研究

doi: 10.13224/j.cnki.jasp.20220700
基金项目: 中央高校基本科研业务费专项资金(3132017007)
详细信息
    作者简介:

    崔颖(1977-),女,副教授、硕士生导师,博士,主要研究方向为发动机结构强度与振动控制、管路连接副结构设计与密封性能

    通讯作者:

    王大玮(1999-),男,硕士生,主要研究方向为形状记忆合金梁式管密封的密封性能与优化设计。E-mail:good4510@163.com

  • 中图分类号: V231

Numerical study on the sealing performance of shape memory alloy beam seal

  • 摘要:

    针对一种阴接头密封梁具有椭圆弧凹槽的形状记忆合金梁式管接头,利用ABAQUS软件建立考虑管内流体压力和温度的弹塑性有限元热力耦合模型,数值模拟得到阴、阳接头间的接触带宽和接触应力分布。基于逾渗理论与微观粗糙密封界面有限元接触分析,计算得到形状记忆合金材料密封界面泄漏概率为零的临界接触应力。结合第一道密封的接触应力分布,以S指数作为形状记忆合金梁式管接头密封性能的评价指标,数值模拟了预紧力、管内流体压力和温度对形状记忆合金梁式管接头密封性能影响。结果表明:在装配拧紧力矩范围内形状记忆合金梁式管接头密封性能随着预紧力增大而增强;密封性能随着管内流体压力的升高会提高,具有良好的自封性;在−50~200 ℃的管内流体温度范围内密封性能基本稳定,满足密封要求。数值分析表明在相同工作条件下形状记忆合金梁式管接头相比于不锈钢和钛合金梁式管接头具有更优的密封性能。

     

  • 图 1  SMA梁式管接头结构示意图

    Figure 1.  Schematic of SMA beam seal

    图 2  SMA梁式管接头结构参数定义

    Figure 2.  Definition of geometric parameters of SMA beam seal

    图 3  有限元计算接触面设置

    Figure 3.  Finite element model of contact surface settings

    图 4  梁式管接头网格划分

    Figure 4.  Mesh division of beam seal

    图 5  最大接触应力与网格数量的关系

    Figure 5.  Maximum contact stress versus mesh number

    图 6  阴接头两道密封接触应力分布

    Figure 6.  Contact stress distribution of two seals of female connector

    图 7  第一道密封的接触应力分布

    Figure 7.  Contact stress distribution on the primary sealing

    图 8  密封面塑性应变分布

    Figure 8.  Plastic strain distribution on the sealing surface

    图 9  泄漏概率随接触面积比的变化曲线

    Figure 9.  Leakage probability versus contact area ratio

    图 10  SMA粗糙面接触模型

    Figure 10.  SMA rough surface contact model

    图 11  接触面积比随接触应力的变化曲线

    Figure 11.  Contact area ratio versus contact stress

    图 12  S 指数求解示意图

    Figure 12.  Schematic of the S index solution

    图 13  第一道密封接触应力随预紧力变化

    Figure 13.  Contact stress distribution on the primary seal versus preloads

    图 14  不同预紧力下SMA梁式管接头S指数

    Figure 14.  S index of SMA beam seal versus preload

    图 15  不同流体压力SMA梁式管接头S指数

    Figure 15.  S index of SMA beam seal versus fluid pressure

    图 16  第一道密封接触应力随流体压力变化

    Figure 16.  Contact stress distribution on the primary seal versus fluid pressure

    图 17  SMA梁式管接头温度场分布云图

    Figure 17.  Contour of temperature field of SMA beam seal

    图 18  S指数随流体压力和温度的变化

    Figure 18.  S index versus presure and temperature of fluid

    图 19  SMA与不锈钢、钛合金梁式管接头S指数对比

    Figure 19.  Comparison of S index of SMA, stainless steel and titanium alloy beam seal

    表  1  SMA梁式管接头结构参数

    Table  1.   Geometric parameters of SMA beam seal

    结构参数数值
    U形梁椭圆弧凹槽的长轴a/mm1.66
    U形梁椭圆弧凹槽的短半轴b/mm0.30
    第一道密封名义接触带宽c/mm0.49
    阳接头壁厚d/mm2.70
    U形口轴向长度e/mm1.04
    密封梁截面宽度h/mm0.50
    阴接头壁厚p/mm1.55
    锥面角α/(°)8.50
    阴接头倒角角度β/(°)45.0
    U形梁底部与阴接头外径的距离δ/mm1.10
    U形梁与径向的夹角θ/(°)15.0
    下载: 导出CSV

    表  2  NiTiFe塑性本构关系

    Table  2.   Plastic constitutive relationship of NiTiFe

    真实应力/MPa塑性应变真实应力/MPa塑性应变
    60007500.03
    6500.018000.06
    7000.028500.1
    下载: 导出CSV

    表  3  NiTiFe材料参数

    Table  3.   Material parameters of NiTiFe

    密度/(g/cm3比热容/(J/(g·℃))热膨胀系数/10−5−1泊松比
    6.4461.10.33
    下载: 导出CSV

    表  4  NiTiFe各温度下的材料参数

    Table  4.   Material parameters of NiTiFe at various temperatures

    温度/℃导热系数/(W/(m·℃))弹性模量/GPa
    −50~020.0991.27
    0~5020.9089.00
    50~10021.7186.28
    100~15022.6884.47
    150~20023.4981.75
    200~25024.4679.48
    下载: 导出CSV

    表  5  304不锈钢塑性本构关系

    Table  5.   Plastic constitutive relationship of 304 stainless steel

    真实应力/MPa塑性应变真实应力/MPa塑性应变
    41808820.25
    5000.015819080.35
    6050.029839210.45
    6950.0569320.55
    7800.0959550.65
    8290.159880.75
    下载: 导出CSV

    表  6  TC4钛合金塑性本构关系

    Table  6.   Plastic constitutive relationship of TC4 titanium alloy

    真实应力/MPa塑性应变
    900.00
    922.50.001
    945.00.002
    967.50.003
    990.00.004
    下载: 导出CSV
  • [1] 欧阳小平,方旭,朱莹,等. 航空液压管接头综述[J]. 中国机械工程,2015,26(16): 2262-2271. doi: 10.3969/j.issn.1004-132X.2015.16.023

    OUYANG Xiaoping,FANG Xu,ZHU Ying,et al. Overview of aviation hydraulic fitting[J]. China Mechanical Engineering,2015,26(16): 2262-2271. (in Chinese) doi: 10.3969/j.issn.1004-132X.2015.16.023
    [2] JEON J Y,KIM B T. A study on contact characteristics by the geometry variation of beam seal fitting of an aircraft fuel hose[J]. Journal of the Korean Society of Manufacturing Process Engineers,2013,12(6): 101-108. doi: 10.14775/ksmpe.2013.12.6.101
    [3] 李晓东. 可分离式航空液压管接头密封特性研究[D]. 辽宁 大连: 大连理工大学, 2018.

    LI Xiaodong. Study on sealing characteristics of separable aviation hydraulic pipe fittings[D]. Dalian Liaoning: Dalian University of Technology, 2018. (in Chinese)
    [4] 崔颖,于颖嘉,王永亮,等. 一种梁式管接头密封性能与结构参数敏感性分析[J]. 机械工程学报,2021,57(3): 147-155. doi: 10.3901/JME.2021.03.147

    CUI Ying,YU Yingjia,WANG Yongliang,et al. Sealing performance and sensitivity analysis of structure parameters for a new beam seal[J]. Journal of Mechanical Engineering,2021,57(3): 147-155. (in Chinese) doi: 10.3901/JME.2021.03.147
    [5] 闫洋洋,庄保顺,高培鑫,等. 航空管路接头密封特性及流体温度影响[J]. 航空动力学报,2019,34(11): 2414-2422. doi: 10.13224/j.cnki.jasp.2019.11.013

    YAN Yangyang,ZHUANG Baoshun,GAO Peixin,et al. Sealing characteristics and fluid temperature influence of aviation pipeline joints[J]. Journal of Aerospace Power,2019,34(11): 2414-2422. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.11.013
    [6] CUI Ying, YU Yingjia. Parameter sensitivity analysis of a beam seal based on a new sealing criterion and orthogonal array method[C]//ASME 2020 Pressure Vessels and Piping Conference. Minneapolis, US: ASME, 2020: 4-14.
    [7] 崔颖,于颖嘉,张宏翔,等. 钛合金梁式管接头密封性能的结构优化设计[J]. 哈尔滨工业大学学报,2022,54(1): 73-79. doi: 10.11918/202108015

    CUI Ying,YU Yingjia,ZHANG Hongxiang,et al. Structural optimization design of sealing performance for titanium alloy beam seal[J]. Journal of Harbin Institute of Technology,2022,54(1): 73-79. (in Chinese) doi: 10.11918/202108015
    [8] 李瀚宇, 周震涛, 唐江龙. 形状记忆合金宽温区超弹性的研究进展[J]. 热加工工艺, 2021, 50(17): 1-5, 11.

    LI Hanyu, ZHOU Zhentao, TANG Jianglong. Research progress on superelasticity of shape memory alloy at wide temperature zone[J]. Hot Working Technology, 201, 50(17): 1-5, 11. (in Chinese)
    [9] 牛豪杰, 林成新. 形状记忆合金的应用现状综述[J]. 天津理工大学学报, 2020, 36(4): 1-6.

    NIU Haojie, LIN Chengxin. Review of shape memory alloy application status[J]. Journal of Tianjin University of Technology, 2020, 36 (4): 1-6. (in Chinese)
    [10] 任文杰,王利强,穆蒙蒙. SMA阻尼器控制单自由度结构在地震激励下的平稳随机振动研究[J]. 工程力学,2016,33(4): 98-103.

    REN Wenjie,WANG Liqiang,MU Mengmeng. Study on steady random vibration of single-dof structure controlled by SMA damper under seismic excitation[J]. Engineering Mechanics,2016,33(4): 98-103. (in Chinese)
    [11] 康泽天,周博,薛世峰. 形状记忆合金管接头热机耦合行为的有限元数值模拟[J]. 机械工程学报,2018,54(18): 68-75. doi: 10.3901/JME.2018.18.068

    KANG Zetian,ZHOU Bo,XUE Shifeng. Research progress on superelasticity of shape memory alloy at wide temperature zone[J]. Journal of Mechanical Engineering,2018,54(18): 68-75. (in Chinese) doi: 10.3901/JME.2018.18.068
    [12] 刘雪峰,何勇,毕重武,等. 镍钛形状记忆合金线材无模拉拔成形过程的电磁场和温度场模拟[J]. 稀有金属,2005,29(5): 762-767. doi: 10.3969/j.issn.0258-7076.2005.05.037

    LIU Xuefeng,HE Yong,BI Zhongwu,et al. Simulation of electromagnetic field and temperature field in formless drawing of nickel-titanium shape memory alloy wire[J]. Rare Metals,2005,29(5): 762-767. (in Chinese) doi: 10.3969/j.issn.0258-7076.2005.05.037
    [13] PERSSON B,ALBOHR O,CRETON C,et al. Contact area between a viscoelastic solid and a hard, randomly rough, substrate[J]. The Journal of Chemical Physics,2004,120(18): 8779-8793. doi: 10.1063/1.1697376
    [14] 崔颖, 孙唯一, 于颖嘉, 等. 基于正交实验的粗糙表面接触密封性能预测方法[J]. 大连海事大学学报, 2019, 45(3): 53-58

    CUI Ying, SUN Weiyi, YU Yingjia, et al. Prediction method of contact sealing performance of rough surface based on orthogonal experiments[J]. Journal of Dalian Maritime University, 2019, 45(3): 53-58. (in Chinese)
    [15] GREENWOOD J A,TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers,1970,185(1): 625-633. doi: 10.1243/PIME_PROC_1970_185_069_02
    [16] SHI X,ZOU Y. A comparative study on equivalent modeling of rough surfaces contact[J]. Journal of Tribology,2018,140(4): 402-424.
    [17] US-SAE. Fitting, tube, fluid systems, separable, beam seal, 3 000/4 000 psi, general specification: AS85421(R) [S]. Warrendale, US: SAE, 2018: 1-5.
    [18] 熊影辉,丁晓宇,刘检华,等. 扩口式管接头拧紧过程扭拉关系研究[J]. 润滑与密封,2017,42(5): 46-52. doi: 10.3969/j.issn.0254-0150.2017.05.009

    XIONG Yinghui,DING Xiaoyu,LIU Jianhua,et al. Study on relationship between preload and tightening torque of flared coupling in tightening process[J]. Lubrication Engineering,2017,42(5): 46-52. (in Chinese) doi: 10.3969/j.issn.0254-0150.2017.05.009
    [19] 陈志伟,敬云兵,甘春雷,等. Fe含量对等原子比NiTi形状记忆合金微观组织、相变行为和显微硬度的影响[J]. 材料研究与应用,2021,15(2): 118-124. doi: 10.3969/j.issn.1673-9981.2021.02.006

    CHEN Zhiwei,JING Yunbing,GAN Chunlei,et al. Effect of Fe content on microstructure, phase transformation behavior and microhardness of the equiatomic NiTi shape memory alloy[J]. Materials Research and Application,2021,15(2): 118-124. (in Chinese) doi: 10.3969/j.issn.1673-9981.2021.02.006
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  353
  • HTML浏览量:  51
  • PDF量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-18
  • 网络出版日期:  2023-01-03

目录

    /

    返回文章
    返回