留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于壁面静压的发动机进口总压畸变重构

刘旭

刘旭. 基于壁面静压的发动机进口总压畸变重构[J]. 航空动力学报, 2023, 38(6):1360-1366 doi: 10.13224/j.cnki.jasp.20220702
引用本文: 刘旭. 基于壁面静压的发动机进口总压畸变重构[J]. 航空动力学报, 2023, 38(6):1360-1366 doi: 10.13224/j.cnki.jasp.20220702
LIU Xu. Reconstruction of engine inlet total pressure distortion based on wall static pressure[J]. Journal of Aerospace Power, 2023, 38(6):1360-1366 doi: 10.13224/j.cnki.jasp.20220702
Citation: LIU Xu. Reconstruction of engine inlet total pressure distortion based on wall static pressure[J]. Journal of Aerospace Power, 2023, 38(6):1360-1366 doi: 10.13224/j.cnki.jasp.20220702

基于壁面静压的发动机进口总压畸变重构

doi: 10.13224/j.cnki.jasp.20220702
详细信息
    作者简介:

    刘旭(1983-),男,高级工程师,硕士,主要从事航空发动机飞行试验和技术研究工作

  • 中图分类号: V235.1

Reconstruction of engine inlet total pressure distortion based on wall static pressure

  • 摘要:

    为了满足航空发动机畸变容限控制技术对发动机进气畸变解算的要求,根据插板扰流畸变模拟试验测得的稳、动态总压和静压数据,采用神经网络方法开展了基于壁面静压的发动机进口稳态总压流场和稳态周向畸变指数重构以及动态总压紊流度重构研究。结果表明:采用神经网络方法,可以较好地建立壁面稳态静压与流场稳态总压分布的相关关系,实现通过有限壁面静压测量数据重构稳态总压流场,重构流场高、低压区范围、总压数值以及稳态周向畸变指数与测量流场吻合良好;通过在神经网络输入参数中增加中心总压以及增加壁面稳态静压测点数量可以提高稳态总压流场的重构精度;根据壁面动态静压的紊流度和气流马赫数采用神经网络方法可以直接重构获得动态总压的紊流度,重构误差在±0.25%以内。

     

  • 图 1  畸变模拟试验装置

    Figure 1.  Distortion simulation test device

    图 2  测量截面测点布局示意图

    Figure 2.  Probes layout on the measuring plane

    图 3  M1模型流场重构结果(H/D=0.3,Ma=0.43)

    Figure 3.  Reconstructed flow field of M1 model (H/D=0.3,Ma=0.43)

    图 4  M1模型流场重构结果(H/D=0.4,Ma=0.35)

    Figure 4.  Reconstructed flow field of M1 model (H/D=0.4,Ma=0.35)

    图 5  网络输入参数中增加中心压力对流场重构精度的影响

    Figure 5.  Influence of adding central pressure into the network inputs on the flow field reconstructing accuracy

    图 6  网络输入参数中增加中心压力对稳态周向畸变指数重构精度的影响

    Figure 6.  Influence of adding central total pressure into the network inputs on the steady-state circumferential distortion index reconstructing accuracy reconstructing accuracy

    图 7  网络输入参数中壁面静压测点数量对流场重构精度的影响

    Figure 7.  Number of wall static pressure probes in the network inputs on the flow field reconstructing accuracy

    图 8  壁面动态静压紊流度与动态总压紊流度的对比

    Figure 8.  Comparison of dynamic wall static pressure turbulence and dynamic total pressure turbulence

    图 9  壁面动态静压紊流度与动态总压紊流度的相关性

    Figure 9.  Correlation between dynamic wall static pressure turbulence and dynamic total pressure turbulence

    图 10  不同神经网络模型动态总压紊流度重构结果对比

    Figure 10.  Dynamic total pressure turbulence reconstructing error of different neutral network models

    图 11  其他测点动态总压紊流度重构结果

    Figure 11.  Dynamic total pressure turbulence reconstructed results of other probes

    表  1  神经网络结构

    Table  1.   Neural network architectures

    神经网络结构元素设置
    输入参数表2
    隐含层1Tansig(s)函数,节点数:30
    隐含层2Tansig(s)函数,节点数:30
    输出层Purelin(s)函数
    输出目标24路稳态总压
    下载: 导出CSV

    表  2  神经网络输入参数类型

    Table  2.   Input parameters of neural networks

    模型编号输入参数
    M112路壁面静压(ps1ps12
    M212路壁面静压(ps1ps12)+1路中心体前端总压(ptc
    M312路壁面静压(ps1ps12)+3路中心体壁面静压(psc1psc2psc3)平均值
    M46路壁面静压(ps1ps3、···、ps11)+1路中心体前端总压(ptc
    M54路壁面静压(ps1ps4ps7ps10)+1路中心体前端总压(ptc
    注:参数符号同图2
    下载: 导出CSV

    表  3  重构流场与测量流场的稳态周向畸变指数和低压区范围对比

    Table  3.   Steady-state circumferential distortion index and low pressure extent comparison between reconstructed flow filed and measured ones

    工况$ \Delta {\stackrel{-}{\sigma }}_{0} $/%$ {\theta }^{-} $/(°)
    测量值M1重构值测量值M1重构值
    H/D=0.3,
    Ma=0.43
    2.222.27185.3183.8
    H/D=0.4,
    Ma=0.35
    2.262.13183.8180.8
    下载: 导出CSV

    表  4  不同输入参数的动态总压紊流度神经网络重构模型

    Table  4.   Dynamic total pressure turbulence reconstructing neutral networks with different inputs

    模型输入参数输出参数
    WLD1${\varepsilon }_{ {p}_{\rm sd} }$${\varepsilon }_{ {p}_{\rm td} }$
    WLD2${\varepsilon }_{ {p}_{\rm sd} }$+Ma${\varepsilon }_{ {p}_{\rm td} }$
    WLD3${\varepsilon }_{ {p}_{\rm sd} }$+$ \Delta {\stackrel{-}{\mathrm{\sigma }}}_{0} $${\varepsilon }_{ {p}_{\rm td} }$
    WLD4${\varepsilon }_{ {p}_{\rm sd} }$+Ma+$ \Delta {\stackrel{-}{\mathrm{\sigma }}}_{0} $${\varepsilon }_{ {p}_{\rm td} }$
    下载: 导出CSV
  • [1] 刘大响, 叶培梁, 胡骏, 等. 航空燃气涡轮发动机稳定性设计与评定技术[M]. 北京: 航空工业出版社, 2004.
    [2] COUSINS W T. History, philosophy, physics, and future directions of aircraft propulsion system/inlet integration[R]. ASME Paper GT2004-54210, 2004.
    [3] 叶巍,祝剑虹,肖大启,等. 涡扇发动机进气畸变容限控制研究[J]. 燃气涡轮试验与研究,2013,26(5): 30-34.

    YE Wei,ZHU Jianhong,XIAO Daqi,et al. Research on the inlet stability control of turbofan engine[J]. Gas Turbine Experiment and Research,2013,26(5): 30-34. (in Chinese)
    [4] 吴斌. 进口畸变下的航空发动机稳定性控制研究[D]. 南京: 南京航空航天大学, 2015.

    WU Bin. Research on stability control for aero-engine with inlet distortion[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
    [5] YONKE W A, TERRELL L A, BEACH P. Integrated flight/propulsion control: adaptive engine control system mode[R]. AIAA-85-1425, 1985.
    [6] MYERS L P, WALSH K R. Preliminary flight results of an adaptive engine control system on an F-15 airplane[R]. AIAA-87-1847, 1987.
    [7] DELAAT J C, SOUTHWICK R D. High stability engine control (HISTEC) [R]. AIAA-96-2586, 1996.
    [8] ORME J S, DELAAT J C, SOUTHWICK R D, et al. Development and testing of a high stability engine control (HISTEC) system[R]. NASA/TM-1998-206562, 1998.
    [9] DELAAT J C, SOUTHWICK R D, ORME J S. The high stability engine control (HISTEC) program: flight demonstration phase[R]. AIAA-98-3756, 1998.
    [10] SOUTHWICK R D, GALLOPS G W, KERR L J, et al. High stability engine control (HISTEC) flight test results[R]. AIAA-98-3757, 1998.
    [11] YUHAS A J, RAY R J, BURLEY R R, et al. Design and development of an F/A-18 inlet distortion rake: a cost and time saving solution[R]. NASA TM-4722, 1995.
    [12] 和永进,史建邦,邢雁,等. 某型飞机进气道测量耙研制[J]. 燃气涡轮试验与研究,2014,21(3): 59-62.

    HE Yongjin,SHI Jianbang,XIN Yan,et al. Development of intake measurement rake for an aircraft[J]. Gas Turbine Experiment and Research,2014,21(3): 59-62. (in Chinese)
    [13] 于芳芳,史建邦,陈钊,等. 基于环散的飞机进气道出口压力测量耙设计[J]. 机械设计,2013,30(4): 56-59. doi: 10.3969/j.issn.1001-2354.2013.04.014

    YU Fangfang,SHI Jianbang,CHENG Zhao,et al. Design of inlet pressure measurement rake of an airplane based on annular radiator[J]. Journal of Machine Design,2013,30(4): 56-59. (in Chinese) doi: 10.3969/j.issn.1001-2354.2013.04.014
    [14] 陶冶,田琳,左思佳. 复合结构航空测量耙振动应变测量试验研究[J]. 科学技术与工程,2016,16(6): 249-253.

    TAO Ye,TIAN Lin,ZUO Sijia. Test and research on vibration strain measurement of composite structural aero measuring rake[J]. Science Technology and Engineering,2016,16(6): 249-253. (in Chinese)
    [15] GRENSON P, GARNIER É. Distortion reconstruction in S-ducts from wall static pressure measurement[EB/OL].[2022-09-16].https://www.researchgate.net/publication/324850872_Distortion_reconstruction_in_S-ducts_from_wall_static_pressure_measurements.
    [16] 叶巍,乔渭阳,侯敏杰. 某型飞机/发动机模拟板设计与校准[J]. 航空动力学报,2010,25(3): 641-646.

    YE Wei,QIAO Weiyang,HOU Minjie. Design and calibration of a certain aircraft/engine’s simulation board[J]. Journal of Aerospace Power,2010,25(3): 641-646. (in Chinese)
    [17] 张韬,赵伟,秦德胜,等. 扇形板压力畸变模拟器特性研究[J]. 推进技术,2019,40(9): 2113-2120.

    ZHANG Tao,ZHAO Wei,QIN Desheng,et al. Research of triangle total pressure distortion generator[J]. Journal of propulsion technology,2019,40(9): 2113-2120. (in Chinese)
    [18] 国防科学技术工业委员会. 航空涡轮喷气和涡轮风扇发动机进口总压畸变评定指南: GJB/Z 64A-2004[S]. 北京: 国防科工军标出版发行部, 2004: 1-7.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  168
  • HTML浏览量:  33
  • PDF量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-18
  • 网络出版日期:  2023-04-25

目录

    /

    返回文章
    返回