留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲压发动机喷管超临界压力燃油冷却特性

史一诺 单勇 谭晓茗 张靖周 孙文静

史一诺, 单勇, 谭晓茗, 等. 冲压发动机喷管超临界压力燃油冷却特性[J]. 航空动力学报, 2024, 39(10):20220704 doi: 10.13224/j.cnki.jasp.20220704
引用本文: 史一诺, 单勇, 谭晓茗, 等. 冲压发动机喷管超临界压力燃油冷却特性[J]. 航空动力学报, 2024, 39(10):20220704 doi: 10.13224/j.cnki.jasp.20220704
SHI Yinuo, SHAN Yong, TAN Xiaoming, et al. Supercritical pressure fuel cooling characteristics of ramjet nozzle[J]. Journal of Aerospace Power, 2024, 39(10):20220704 doi: 10.13224/j.cnki.jasp.20220704
Citation: SHI Yinuo, SHAN Yong, TAN Xiaoming, et al. Supercritical pressure fuel cooling characteristics of ramjet nozzle[J]. Journal of Aerospace Power, 2024, 39(10):20220704 doi: 10.13224/j.cnki.jasp.20220704

冲压发动机喷管超临界压力燃油冷却特性

doi: 10.13224/j.cnki.jasp.20220704
详细信息
    作者简介:

    史一诺(1997-),男,硕士生,主要从事航空发动机传热方面的研究

    通讯作者:

    单勇(1978-),男,教授、博士生导师,博士,主要从事飞行器红外隐身和航空发动机传热方面的研究。E-mail:nuaasy@nuaa.edu.cn

  • 中图分类号: V231.1

Supercritical pressure fuel cooling characteristics of ramjet nozzle

  • 摘要:

    在获取冲压发动机喷管典型热负荷及其换热边界条件的前提下,构建一种纵向带肋超临界压力燃油冷却多通道结构,对比分析了燃油流动方向、燃油流量(68~204 g/s)、燃油进口温度(300~640 K)、燃油超临界压力(3~5 MPa)对通道内超临界压力燃油的流动和换热特性影响。结果表明:超临界压力燃油消耗275 g/(s·m2),就能够将喷管壁面最高温度由2 986 K降低到1 200 K以下;燃油与喷管内燃气流动方向一致时,可充分利用燃油换热的入口段效应,降低喷管入口壁面高温,喷管进出口壁面温差减小,轴向热应力减小;燃油质量流量增加,冷却通道内表面传热系数提高,冷却效果提高,但是燃油压降逐渐增加;燃油进口温度过高会使通道近壁处流体的热扩散系数急剧增大,造成传热恶化,存在某一最佳进口温度使燃油压降最低;在燃油进口温度较低的情况下,燃气侧壁面温度和燃油压降随燃油压力变化不敏感。

     

  • 图 1  喷管结构示意图(单位:mm)

    Figure 1.  Schematic diagram of nozzle structure (unit: mm)

    图 2  计算域二维示意图(单位:mm)

    Figure 2.  2D schematic diagram of computational domain (unit: mm)

    图 3  喷管进口总压分布

    Figure 3.  Total pressure distribution on nozzle inlet

    图 4  喷管进口总温分布

    Figure 4.  Total temperature distribution on nozzle inlet

    图 5  喷管燃气侧壁面绝热温度分布

    Figure 5.  Adiabatic temperature distribution on the gas side wall of the nozzle

    图 6  喷管燃气侧壁面表面传热系数分布

    Figure 6.  Surface heat transfer coefficient distribution on the gas side wall of the nozzle

    图 7  喷管壁面及冷却通道计算模型(单位:mm)

    Figure 7.  Calculation model of the wall of nozzle and cooling channel (unit:mm)

    图 8  网格划分示意图

    Figure 8.  Schematic diagram of mesh division

    图 9  网格独立性验证

    Figure 9.  Grid independent validation

    图 10  不同超临界压力下RP-3物性随温度变化分布

    Figure 10.  Distribution of physical properties of RP-3 with temperature under different supercritical pressures

    图 11  不同燃油流动方向燃气侧壁面温度分布

    Figure 11.  Temperature distribution on the gas side wall in different fuel flow directions

    图 12  不同燃油流动方向Z=0 m截面温度分布

    Figure 12.  Temperature distribution of section at Z=0 m in different fuel flow directions

    图 13  不同燃油流动方向特征线A热流密度分布

    Figure 13.  Density of heat flux distribution of feature line A in different fuel flow directions

    图 14  不同燃油质量流量特征线A温度分布

    Figure 14.  Temperature distribution of feature line A with different fuel mass flows

    图 15  不同燃油质量流量通道19表面传热系数分布

    Figure 15.  Surface heat transfer coefficient distribution of channel 19 with different fuel mass flows

    图 16  不同燃油质量流量特征线B热扩散系数分布

    Figure 16.  Thermal diffusivity distribution of feature line B with different fuel mass flows

    图 17  不同燃油质量流量燃油压降及燃油出口速度

    Figure 17.  Fuel pressure drop and fuel outlet velocity distribution with different fuel mass flows

    图 18  不同燃油进口温度特征线A温度分布

    Figure 18.  Temperature distribution of feature line A with different fuel inlet temperatures

    图 19  不同燃油进口温度特征线B热扩散系数分布

    Figure 19.  Thermal diffusivity distribution of feature line B with different fuel inlet temperatures

    图 20  不同燃油进口温度燃油压降及燃油出口速度

    Figure 20.  Fuel pressure drop and fuel outlet velocity distribution with different fuel inlet temperatures

    图 21  不同燃油压力特征线A温度分布

    Figure 21.  Temperature distribution of feature line A with different fuel pressures

    图 22  不同燃油压力特征线B热扩散系数分布

    Figure 22.  Thermal diffusivity distribution of feature line B with different fuel pressures

    图 23  不同燃油压力燃油压降及燃油出口速度

    Figure 23.  Fuel pressure drop and fuel outlet velocity distribution with different fuel pressures

    表  1  喷管壁面边界条件及编号

    Table  1.   Nozzle wall boundary conditions and labels

    算例 边界条件
    燃气侧壁面 外侧壁 其他壁面
    1 绝热 绝热 绝热
    2 流固耦合 自然对流+热辐射 绝热
    下载: 导出CSV

    表  2  不同燃油流动方向燃气侧壁面温度

    Table  2.   Temperatures of the gas side wall in different fuel flow directions

    燃油流动方向 最高温度/K 最低温度/K 平均温度/K
    顺流 1033 555 693
    逆流 1133 351 594
    下载: 导出CSV

    表  3  不同燃油质量流量燃气侧壁面温度及冷却燃油量

    Table  3.   Temperatures and cooling fuel quantity of the gas side wall in different fuel mass flow

    $ \dot{m} $/(g/s)最高温度/K最低温度/K平均温度/KGw/(g/(s·m2))
    681097628765275
    1021033555693413
    136998513652551
    170974485624688
    204958463603972
    下载: 导出CSV

    表  4  不同燃油进口温度下的燃气侧壁面温度

    Table  4.   Temperatures of the gas side wall with different fuel inlet temperatures

    Tin/K最高温度/K最低温度/K平均温度/K
    3001033555693
    4001063608738
    5001100672791
    6001152732855
    6401184763887
    下载: 导出CSV

    表  5  不同燃油压力下的燃气侧壁面温度

    Table  5.   Temperatures of the gas side wall with differentfuel pressures

    p/MPa最高温度/K最低温度/K平均温度/K
    31033555693
    41035561699
    51036565702
    下载: 导出CSV
  • [1] 徐惊雷. 超燃冲压及TBCC组合循环发动机尾喷管设计方法研究进展[J]. 推进技术,2018,39(10): 2236-2251. XU Jinglei. Research progress of nozzle design method for scramjet and turbine based combined cycle[J]. Journal of Propulsion Technology,2018,39(10): 2236-2251. (in Chinese

    XU Jinglei. Research progress of nozzle design method for scramjet and turbine based combined cycle[J]. Journal of Propulsion Technology, 2018, 39(10): 2236-2251. (in Chinese)
    [2] CURRAN E T,MURTHY S N B. Scramjet propulsion[M]. Reston,US: AIAA,2000.
    [3] KAZMAR R R. Airbreathing hypersonic propulsion at Pratt & Whitney: overview[R]. AIAA-2005-3256,2005.
    [4] SERRE L,FALEMPIN F. Promethee-the French military hypersonic propulsion program[R]. AIAA-2003-6950,2003.
    [5] KOBAYASHI S,MAITA M. Japanese spaceplane program over-view[R]. AIAA-1995-6002,1995.
    [6] 李旭彦,郑星,薛瑞. 超燃冲压发动机技术发展现状及相关建议[J]. 科技中国,2019(2): 5-8. LI Xuyan,ZHENG Xing,XUE Rui. Development status of scramjet technology and related suggestions[J]. China Scitechnology Business,2019(2): 5-8. (in Chinese

    LI Xuyan, ZHENG Xing, XUE Rui. Development status of scramjet technology and related suggestions[J]. China Scitechnology Business, 2019(2): 5-8. (in Chinese)
    [7] 章思龙,秦江,周伟星,等. 高超声速推进再生冷却研究综述[J]. 推进技术,2018,39(10): 2177-2190. ZHANG Silong,QIN Jiang,ZHOU Weixing,et al. Review on regenerative cooling technology of hypersonic propulsion[J]. Journal of Propulsion Technology,2018,39(10): 2177-2190. (in Chinese

    ZHANG Silong, QIN Jiang, ZHOU Weixing, et al. Review on regenerative cooling technology of hypersonic propulsion[J]. Journal of Propulsion Technology, 2018, 39(10): 2177-2190. (in Chinese)
    [8] 肖红雨,高峰,李宁. 再生冷却技术在超燃冲压发动机中的应用与发展[J]. 飞航导弹,2013(8): 78-81. XIAO Hongyu,GAO Feng,LI Ning. Application and development of regenerative cooling technology in scramjet[J]. Aerodynamic Missile Journal,2013(8): 78-81. (in Chinese

    XIAO Hongyu, GAO Feng, LI Ning. Application and development of regenerative cooling technology in scramjet[J]. Aerodynamic Missile Journal, 2013(8): 78-81. (in Chinese)
    [9] 黄世璋,朱强华,高效伟. 碳氢燃料在波纹管内的超临界裂解传热特性[J]. 推进技术,2019,40(1): 95-106. HUANG Shizhang,ZHU Qianghua,GAO Xiaowei. Supercritical heat transfer characteristics of hydrocarbon fuel with pyrolysis in corrugated tubes[J]. Journal of Propulsion Technology,2019,40(1): 95-106. (in Chinese

    HUANG Shizhang, ZHU Qianghua, GAO Xiaowei. Supercritical heat transfer characteristics of hydrocarbon fuel with pyrolysis in corrugated tubes[J]. Journal of Propulsion Technology, 2019, 40(1): 95-106. (in Chinese)
    [10] 袁鑫,寇志海,赵国昌,等. 矩形通道超临界再生冷却技术研究综述[J]. 飞航导弹,2017(5): 18-23,42. YUAN Xin,KOU Zhihai,ZHAO Guochang,et al. Review on supercritical regenerative cooling technology in rectangular channel[J]. Aerodynamic Missile Journal,2017(5): 18-23,42. (in Chinese

    YUAN Xin, KOU Zhihai, ZHAO Guochang, et al. Review on supercritical regenerative cooling technology in rectangular channel[J]. Aerodynamic Missile Journal, 2017(5): 18-23, 42. (in Chinese)
    [11] HUANG Dan,RUAN Bo,WU Xiaoyu,et al. Experimental study on heat transfer of aviation kerosene in a vertical upward tube at supercritical pressures[J]. Chinese Journal of Chemical Engineering,2015,23(2): 425-434. doi: 10.1016/j.cjche.2014.10.016
    [12] 贾洲侠,徐国强,闻洁,等. 超临界压力RP-3在竖直细圆管内混合对流研究[J]. 北京航空航天大学学报,2016,42(1): 152-157. JIA Zhouxia,XU Guoqiang,WEN Jie,et al. Investigation of mixed convection of supercritical pressure RP-3 in vertical round tube[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(1): 152-157. (in Chinese

    JIA Zhouxia, XU Guoqiang, WEN Jie, et al. Investigation of mixed convection of supercritical pressure RP-3 in vertical round tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 152-157. (in Chinese)
    [13] 黄世璋,阮波,高效伟. 超临界压力低温甲烷波纹管内强化换热数值研究[J]. 航空学报,2017,38(5): 120515. HUANG Shizhang,RUAN Bo,GAO Xiaowei. Numerical investigation of heat transfer enhancement of cryogenic-propellant methane in corrugated tubes at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica,2017,38(5): 120515. (in Chinese

    HUANG Shizhang, RUAN Bo, GAO Xiaowei. Numerical investigation of heat transfer enhancement of cryogenic-propellant methane in corrugated tubes at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5): 120515. (in Chinese)
    [14] 胡家瑛,王振国,潘余,等. 超燃冲压发动机U型冷却通道的流道方案[J]. 航空动力学报,2022,37(1): 11-25. HU Jiaying,WANG Zhenguo,PAN Yu,et al. Flow channel scheme of U-shaped cooling channel in scramjet[J]. Journal of Aerospace Power,2022,37(1): 11-25. (in Chinese

    HU Jiaying, WANG Zhenguo, PAN Yu, et al. Flow channel scheme of U-shaped cooling channel in scramjet[J]. Journal of Aerospace Power, 2022, 37(1): 11-25. (in Chinese)
    [15] 胡江玉,王宁,周进,等. 高温燃气与不同构型的再生冷却面板对流传热的数值模拟[J]. 国防科技大学学报,2021,43(5): 46-52. HU Jiangyu,WANG Ning,ZHOU Jin,et al. Numerical simulation on convective heat transfer between high-temperature gas and regenerative cooling panels of different configurations[J]. Journal of National University of Defense Technology,2021,43(5): 46-52. (in Chinese

    HU Jiangyu, WANG Ning, ZHOU Jin, et al. Numerical simulation on convective heat transfer between high-temperature gas and regenerative cooling panels of different configurations[J]. Journal of National University of Defense Technology, 2021, 43(5): 46-52. (in Chinese)
    [16] 黄玥,于佳佳,肖恒,等. 极限重力下冲压发动机再生冷却中燃油流动及传热特性研究[J]. 工程热物理学报,2021,42(8): 2097-2105. HUANG Yue,YU Jiajia,XIAO Heng,et al. Study on the flow and heat transfer characteristics of fuel in regenerative cooling system of scramjet engine under extreme gravity[J]. Journal of Engineering Thermophysics,2021,42(8): 2097-2105. (in Chinese

    HUANG Yue, YU Jiajia, XIAO Heng, et al. Study on the flow and heat transfer characteristics of fuel in regenerative cooling system of scramjet engine under extreme gravity[J]. Journal of Engineering Thermophysics, 2021, 42(8): 2097-2105. (in Chinese)
    [17] 杨成骁,王长辉,徐绍桐. 液体火箭发动机推力室再生冷却流动与传热计算研究[J]. 推进技术,2022,43(1): 239-245. YANG Chengxiao,WANG Changhui,XU Shaotong. Calculation study on flow and heat transfer of regenerative cooling in liquid rocket engine thrust chamber[J]. Journal of Propulsion Technology,2022,43(1): 239-245. (in Chinese

    YANG Chengxiao, WANG Changhui, XU Shaotong. Calculation study on flow and heat transfer of regenerative cooling in liquid rocket engine thrust chamber[J]. Journal of Propulsion Technology, 2022, 43(1): 239-245. (in Chinese)
    [18] 韩炜. 液体火箭发动机再生冷却推力室耦合传热的数值研究[D]. 哈尔滨: 哈尔滨工程大学,2017. HAN Wei. Numerical research on the coupled heat transfer of thrust chamber in cooling channel of liquid rocket[D]. Harbin: Harbin Engineering University,2017. (in Chinese

    HAN Wei. Numerical research on the coupled heat transfer of thrust chamber in cooling channel of liquid rocket[D]. Harbin: Harbin Engineering University, 2017. (in Chinese)
    [19] 孙冰,宋佳文. 液氧甲烷发动机台阶型冷却通道的耦合传热特性[J]. 航空动力学报,2016,31(12): 2972-2978. SUN Bing,SONG Jiawen. Coupled heat transfer characteristics of stepped cooling channel of liquid oxygen/methane rocket engine[J]. Journal of Aerospace Power,2016,31(12): 2972-2978. (in Chinese

    SUN Bing, SONG Jiawen. Coupled heat transfer characteristics of stepped cooling channel of liquid oxygen/methane rocket engine[J]. Journal of Aerospace Power, 2016, 31(12): 2972-2978. (in Chinese)
    [20] 李军伟,刘宇. 三维数值模拟再生冷却喷管的换热[J]. 推进技术,2005,26(2): 111-115. LI Junwei,LIU Yu. Three dimension numerical simulation of heat transfer in regeneratively cooled nozzle[J]. Journal of Propulsion Technology,2005,26(2): 111-115. (in Chinese

    LI Junwei, LIU Yu. Three dimension numerical simulation of heat transfer in regeneratively cooled nozzle[J]. Journal of Propulsion Technology, 2005, 26(2): 111-115. (in Chinese)
    [21] 李军伟,刘宇. 一种计算再生冷却推力室温度场的方法[J]. 航空动力学报,2004,19(4): 550-556. LI Junwei,LIU Yu. Method of computing temperature field in regeneratively-cooled thrust chamber[J]. Journal of Aerospace Power,2004,19(4): 550-556. (in Chinese

    LI Junwei, LIU Yu. Method of computing temperature field in regeneratively-cooled thrust chamber[J]. Journal of Aerospace Power, 2004, 19(4): 550-556. (in Chinese)
    [22] 王新竹,张泰昌,陆阳,等. 主动冷却燃烧室燃烧与传热耦合过程迭代分析设计方法[J]. 推进技术,2014,35(2): 213-219. WANG Xinzhu,ZHANG Taichang,LU Yang,et al. An iterative analysis and design method for study of coupling processes of combustion and heat transfer in actively-cooled scramjet combustor[J]. Journal of Propulsion Technology,2014,35(2): 213-219. (in Chinese

    WANG Xinzhu, ZHANG Taichang, LU Yang, et al. An iterative analysis and design method for study of coupling processes of combustion and heat transfer in actively-cooled scramjet combustor[J]. Journal of Propulsion Technology, 2014, 35(2): 213-219. (in Chinese)
    [23] FROELICH A,IMMICH H,LEBAIL F,et al. Three-dimensional flow analysis in a rocket engine coolant channel of high depth/width ratio[R]. AIAA-1991-2183,1991.
    [24] 戎毅,朱剑琴,戴武昊,等. 超燃冲压发动机冷却通道与燃烧室耦合传热数值研究[J]. 推进技术,2022,43(4): 173-182. RONG Yi,ZHU Jianqin,DAI Wuhao,et al. Numerical study on coupled heat transfer between cooling channel and combustor of scramjet[J]. Journal of Propulsion Technology,2022,43(4): 173-182. (in Chinese

    RONG Yi, ZHU Jianqin, DAI Wuhao, et al. Numerical study on coupled heat transfer between cooling channel and combustor of scramjet[J]. Journal of Propulsion Technology, 2022, 43(4): 173-182. (in Chinese)
    [25] 张靖周,常海萍. 传热学[M]. 2版. 北京: 科学出版社,2015.
    [26] 王明华,陈劲松. 发动机喷管内流场对流换热系数影响因素的数值分析[J]. 火箭推进,2011,37(3): 32-37. WANG Minghua,CHEN Jinsong. Numerical analysis of influence factor on convective heat transfer coefficient about nozzle internal flow[J]. Journal of Rocket Propulsion,2011,37(3): 32-37. (in Chinese

    WANG Minghua, CHEN Jinsong. Numerical analysis of influence factor on convective heat transfer coefficient about nozzle internal flow[J]. Journal of Rocket Propulsion, 2011, 37(3): 32-37. (in Chinese)
    [27] 刘友宏,郜晶晶. TBCC燃烧室/喷管一体化壁面温度计算[J]. 航空动力学报,2017,32(2): 257-267. LIU Youhong,GAO Jingjing. Wall temperature calculation on integrated combustion and nozzle in TBCC[J]. Journal of Aerospace Power,2017,32(2): 257-267. (in Chinese

    LIU Youhong, GAO Jingjing. Wall temperature calculation on integrated combustion and nozzle in TBCC[J]. Journal of Aerospace Power, 2017, 32(2): 257-267. (in Chinese)
    [28] TAO Zhi,CHENG Zeyuan,ZHU Jianqin,et al. Effect of turbulence models on predicting convective heat transfer to hydrocarbon fuel at supercritical pressure[J]. Chinese Journal of Aeronautics,2016,29(5): 1247-1261. doi: 10.1016/j.cja.2016.08.007
    [29] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32(8): 1598-1605. doi: 10.2514/3.12149
    [30] 赵国柱,宋文艳,张若凌. 超临界压力下RP-3航空煤油吸热裂解反应的数值研究[J]. 航空学报,2014,35(6): 1513-1521. ZHAO Guozhu,SONG Wenyan,ZHANG Ruoling. Numerical study on thermal cracking of RP-3 aviation kerosene under supercritical pressure[J]. Acta Aeronautica et Astronautica Sinica,2014,35(6): 1513-1521. (in Chinese

    ZHAO Guozhu, SONG Wenyan, ZHANG Ruoling. Numerical study on thermal cracking of RP-3 aviation kerosene under supercritical pressure[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(6): 1513-1521. (in Chinese)
  • 加载中
图(23) / 表(5)
计量
  • 文章访问数:  25
  • HTML浏览量:  22
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-19
  • 网络出版日期:  2023-12-26

目录

    /

    返回文章
    返回