留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

当量比对常温煤油-氢气-空气旋转爆轰传播影响

黄瀚黎 吕亚锦 郑权 吴明亮 肖强 王放 翁春生

黄瀚黎, 吕亚锦, 郑权, 等. 当量比对常温煤油-氢气-空气旋转爆轰传播影响[J]. 航空动力学报, 2022, X(X):20220712 doi: 10.13224/j.cnki.jasp.20220712
引用本文: 黄瀚黎, 吕亚锦, 郑权, 等. 当量比对常温煤油-氢气-空气旋转爆轰传播影响[J]. 航空动力学报, 2022, X(X):20220712 doi: 10.13224/j.cnki.jasp.20220712
HUANG Hanli, LYU Yajin, ZHENG Quan, et al. Effect of equivalence ratio on kerosene-hydrogen-air rotating detonation propagation at room temperature[J]. Journal of Aerospace Power, 2022, X(X):20220712 doi: 10.13224/j.cnki.jasp.20220712
Citation: HUANG Hanli, LYU Yajin, ZHENG Quan, et al. Effect of equivalence ratio on kerosene-hydrogen-air rotating detonation propagation at room temperature[J]. Journal of Aerospace Power, 2022, X(X):20220712 doi: 10.13224/j.cnki.jasp.20220712

当量比对常温煤油-氢气-空气旋转爆轰传播影响

doi: 10.13224/j.cnki.jasp.20220712
基金项目: 国家自然科学基金(12272185,12172177,12102195,12202204); 中国博士后科学基金(2022M711622); 江苏省卓越博士后计划
详细信息
    作者简介:

    黄瀚黎(1996−),男,硕士生,主要研究方向为旋转爆轰推进。E-mail:douhl@njust.edu.cn

    通讯作者:

    郑权(1988−),男,副研究员,博士,主要研究方向为爆轰推进。E-mail:q.zheng@njust.edu.cn

  • 中图分类号: V231

Effect of equivalence ratio on kerosene-hydrogen-air rotating detonation propagation at room temperature

  • 摘要:

    为研究当量比和氢气质量分数对旋转爆轰波传播特性的影响,燃料采用煤油和氢气,氧化剂为空气,数值模拟了旋转爆轰过程,分析了旋转爆轰波传播特性、内流场组分分布特征以及爆轰波稳定性。计算结果表明:随着氢气质量分数的增加,旋转爆轰波成功起爆的当量比范围逐渐变窄,爆轰波压力峰值整体呈下降趋势,爆轰波传播速度呈上升趋势,速度亏损随当量比增加先减小后增大。贫燃条件下,富燃区燃料与氧化剂掺混不均匀且氧气呈条状带分布;富燃条件下,缓燃区增大缓燃加剧,富氧区边缘呈波浪状。爆轰波在当量比1.0~1.2之间传播稳定性较高;从点火到形成稳定旋转爆轰波的时间在当量比为化学恰当比时达到极小值,但随氢气质量分数增加而逐渐增加。

     

  • 图 1  旋转爆轰燃烧室二维计算域示意图

    Figure 1.  Schematic diagram of two-dimensional calculation domain of rotating detonation combustor

    图 2  ω(H2)=0.3,Er=1监测点(x=100 mm、y=5 mm)的压力和温度时程曲线

    Figure 2.  Pressure and temperature time history curve at monitoring point(x=100 mm,y=5 mm), ω(H2)=0.3,Er=1

    图 3  不同网格尺寸燃烧室入口压力分布图

    Figure 3.  Pressure distribution at the inlet of combustor with different mesh sizes

    图 4  RDE工作范围分布图

    Figure 4.  Distribution map of RDE working scope

    图 5  不同工况下连续旋转爆轰波平均压力峰值和平均温度峰值分布

    Figure 5.  Distribution of average peak pressure and average peak temperature of continuous rotating detonation wave under different working conditions

    图 6  不同工况下连续旋转爆轰波速度及速度亏损分布

    Figure 6.  Velocity and velocity deficit distribution of continuous rotating detonation wave under different working conditions

    图 7  内流场当量比及各组分分布(Er=0.5、ω(H2)=0.3)

    Figure 7.  Equivalent ratio of internal flow field and distribution of each components (Er=0.5,ω(H2)=0.3)

    图 8  内流场当量比及各组分分布(Er=0.8、ω(H2)=0.3)

    Figure 8.  Equivalent ratio of internal flow field and distribution of each components (Er=0.8,ω(H2)=0.3)

    图 9  内流场当量比及各组分分布(Er=1.0、ω(H2)=0.3)

    Figure 9.  Equivalent ratio of internal flow field and distribution of each components (Er=1.0,ω(H2)=0.3)

    图 10  内流场当量比及各组分分布(Er=1.5、ω(H2)=0.3)

    Figure 10.  Equivalent ratio of internal flow field and distribution of each components (Er=1.5,ω(H2)=0.3)

    图 11  spsT随当量比和氢气质量分数的变化曲线

    Figure 11.  Variation curve of sp and sT with equivalent ratio and hydrogen mass fraction

    图 12  当量比和氢气质量分数的变化对 $ \Delta {t}_{\mathrm{f}} $的影响

    Figure 12.  Influence of equivalence ratio and hydrogen mass fraction on $ \Delta {t}_{\mathrm{f}} $

    表  1  化学反应及参数

    Table  1.   Chemical reactions and parameters

    化学反应 A/10−8 E/10−7 (J/kg·mol)
    H2+0.5O2=H2O 9.87 3.1
    C12H23+17.75O2=12CO2+11.5H2O 25.8 12.5
    下载: 导出CSV

    表  2  数值模拟计算值与C-J理论值的差异

    Table  2.   Differences between the calculated value of numerical simulation and the theoretical value of C-J

    参数 理论值 计算值 误差
    T/K 2887.86 2884.63 0.11%
    p/MPa 3.07 3.16 2.93%
    v/(m/s) 1880.9 1742.16 7.38%
    下载: 导出CSV
  • [1] GODDARD R H. Reaction combustion chamber for unconfined charges or detonative fuel fed intermittently to the combustion chamber: US2465525[P]. 1949-03-29.
    [2] MIAO Shikun,ZHOU Jin,LIN Zhiyong,et al. Numerical study on thermodynamic efficiency and stability of oblique detonation waves[J]. AIAA Journal,2018,56(8): 3112-3122. doi: 10.2514/1.J056887
    [3] DRISCOLL R,RANDALL S,ST GEORGE A,et al. Shock-initiated combustion in an airbreathing,pulse detonation engine-crossover system[J]. AIAA Journal,2016,54(3): 936-949. doi: 10.2514/1.J054571
    [4] ANAND V,GLASER A,GUTMARK E. Acoustic characterization of pulse detonation combustors[J]. AIAA Journal,2018,56(7): 2806-2815. doi: 10.2514/1.J056204
    [5] KAILASANATH K. Recent developments in the research on rotating-detonation-wave engines: AIAA2017-0784 [R]. Reston,US: AIAA,2017.
    [6] ANAND V,GUTMARK E. Rotating detonation combustors and their similarities to rocket instabilities[J]. Progress in Energy and Combustion Science,2019,73: 182-234. doi: 10.1016/j.pecs.2019.04.001
    [7] ANAND V,ST GEORGE A,DRISCOLL R,et al. Characterization of instabilities in a rotating detonation combustor[J]. International Journal of Hydrogen Energy,2015,40(46): 16649-16659. doi: 10.1016/j.ijhydene.2015.09.046
    [8] ANAND V,ST GEORGE A,DRISCOLL R,et al. Investigation of rotating detonation combustor operation with H2-Air mixtures[J]. International Journal of Hydrogen Energy,2016,41(2): 1281-1292. doi: 10.1016/j.ijhydene.2015.11.041
    [9] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F. Continuous spin detonation of fuel-air mixtures[J]. Combustion,Explosion and Shock Waves,2006,42(4): 463-471. doi: 10.1007/s10573-006-0076-9
    [10] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F. Continuous spin detonations[J]. Journal of Propulsion and Power,2006,22(6): 1204-1216. doi: 10.2514/1.17656
    [11] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F. Initiation of detonation of fuel-air mixtures in a flow-type annular combustor[J]. Combustion,Explosion,and Shock Waves,2014,50(2): 214-222. doi: 10.1134/S0010508214020130
    [12] KINDRACKI J. Experimental studies of kerosene injection into a model of a detonation chamber[J]. Journal of Power of Technologies,2012,92: 80-89.
    [13] KINDRACKI J. Experimental research on rotating detonation in liquid fuel–gaseous air mixtures[J]. Aerospace Science and Technology,2015,43: 445-453. doi: 10.1016/j.ast.2015.04.006
    [14] SHAO Yetao,LIU Meng,WANG Jianping. Numerical investigation of rotating detonation engine propulsive performance[J]. Combustion Science and Technology,2010,182(11/12): 1586-1597.
    [15] SHAO Yetao,LIU Meng,WANG Jianping. Continuous detonation engine and effects of different types of nozzle on its propulsion performance[J]. Chinese Journal of Aeronautics,2010,23(6): 647-652. doi: 10.1016/S1000-9361(09)60266-1
    [16] XIE Qiaofeng,WEN Haocheng,LI Weihong,et al. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition[J]. Energy,2018,151: 408-419. doi: 10.1016/j.energy.2018.03.062
    [17] XIE Qiaofeng,WANG Bing,WEN Haocheng,et al. Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition[J]. Journal of Propulsion and Power,2019,35(1): 141-151. doi: 10.2514/1.B37044
    [18] 刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究[D]. 长沙: 国防科学技术大学,2012. LIU Shijie. Investigations on the structure,rotating mode and lasting mechanism of continuous rotating detonation wave[D]. Changsha: National University of Defense Technology,2012. (in Chinese

    LIU Shijie. Investigations on the structure, rotating mode and lasting mechanism of continuous rotating detonation wave[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
    [19] LIN Wei,ZHOU Jin,LIU Shijie,et al. Experimental study on propagation mode of H2/Air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy,2015,40(4): 1980-1993. doi: 10.1016/j.ijhydene.2014.11.119
    [20] 王迪. 煤油两相连续旋转爆震发动机喷注雾化及工作特性研究[D]. 长沙: 国防科学技术大学,2015. WANG Di. Study on spray atomization and working characteristics of kerosene two-phase continuous rotating detonation engine[D]. Changsha: National University of Defense Technology,2015. (in Chinese

    WANG Di. Study on spray atomization and working characteristics of kerosene two-phase continuous rotating detonation engine[D]. Changsha: National University of Defense Technology, 2015. (in Chinese)
    [21] ZHENG Hongtao,MENG Qingyang,ZHAO Ningbo,et al. Numerical investigation on H2/Air non-premixed rotating detonation engine under different equivalence ratios[J]. International Journal of Hydrogen Energy,2020,45(3): 2289-2307. doi: 10.1016/j.ijhydene.2019.11.014
    [22] 王致程,严宇,王可,等. 燃烧室宽度对煤油旋转爆震波传播模态的影响[J]. 推进技术,2021,42(4): 842-850. WANG Zhicheng,YAN Yu,WANG Ke,et al. Effects of combustor width on propagation modes of rotating detonation waves utilizing liquid kerosene[J]. Journal of Propulsion Technology,2021,42(4): 842-850. (in Chinese

    WANG Zhicheng, YAN Yu, WANG Ke, et al. Effects of combustor width on propagation modes of rotating detonation waves utilizing liquid kerosene[J]. Journal of Propulsion Technology, 2021, 42(4): 842-850. (in Chinese)
    [23] 杨帆,王宇辉,李世全,等. 基于煤油的旋转爆轰发动机流场数值模拟[J]. 航空动力学报,2022,37(8): 1620-1632. YANG Fan,WANG Yuhui,LI Shiquan,et al. Numerical simulations of flow field of rotating detonation engine fueled by kerosene[J]. Journal of Aerospace Power,2022,37(8): 1620-1632. (in Chinese

    YANG Fan, WANG Yuhui, LI Shiquan, et al. Numerical simulations of flow field of rotating detonation engine fueled by kerosene[J]. Journal of Aerospace Power, 2022, 37(8): 1620-1632. (in Chinese)
    [24] 徐高,翁春生,武郁文,等. 气相与液相两相连续旋转爆轰发动机二维数值模拟[J]. 兵工学报,2020,41(增刊1): 21-29. XU Gao,WENG Chunsheng,WU Yuwen,et al. Two-dimensional numerical simulation of gas-liquid two-phase continuous rotating detonation engine[J]. Acta Armamentarii,2020,41(Suppl.1): 21-29. (in Chinese

    XU Gao, WENG Chunsheng, WU Yuwen, et al. Two-dimensional numerical simulation of gas-liquid two-phase continuous rotating detonation engine[J]. Acta Armamentarii, 2020, 41(Suppl.1): 21-29. (in Chinese)
    [25] ZHENG Quan,MENG Haolong,WENG Chunsheng,et al. Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave[J]. Defence Technology,2020,16(6): 1106-1115. doi: 10.1016/j.dt.2020.06.028
    [26] 吴明亮,郑权,续晗,等. 氢气占比对常温煤油-空气旋转爆轰波传播特性影响的数值模拟[J]. 兵工学报,2022,43(1): 86-97. WU Mingliang,ZHENG Quan,XU Han,et al. Numerical research on the influence of hydrogen proportion on the propagate-on characteristics of room temperature kerosene-air rotating detonation waves[J]. Acta Armamentarii,2022,43(1): 86-97. (in Chinese

    WU Mingliang, ZHENG Quan, XU Han, et al. Numerical research on the influence of hydrogen proportion on the propagate-on characteristics of room temperature kerosene-air rotating detonation waves[J]. Acta Armamentarii, 2022, 43(1): 86-97. (in Chinese)
    [27] 贾冰岳,张义宁,潘虎,等. 液态碳氢燃料旋转爆震发动机起爆过程试验研究[J]. 推进技术,2021,42(4): 906-914. JIA Bingyue,ZHANG Yining,PAN Hu,et al. Experimental study on initiation process of liquid hydrocarbon rotary detonation engine[J]. Journal of Propulsion Technology,2021,42(4): 906-914. (in Chinese

    JIA Bingyue, ZHANG Yining, PAN Hu, et al. Experimental study on initiation process of liquid hydrocarbon rotary detonation engine[J]. Journal of Propulsion Technology, 2021, 42(4): 906-914. (in Chinese)
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  44
  • HTML浏览量:  23
  • PDF量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 网络出版日期:  2024-02-23

目录

    /

    返回文章
    返回