Effect of equivalence ratio on kerosene-hydrogen-air rotating detonation propagation at room temperature
-
摘要:
为研究当量比和氢气质量分数对旋转爆轰波传播特性的影响,燃料采用煤油和氢气,氧化剂为空气,数值模拟了旋转爆轰过程,分析了旋转爆轰波传播特性、内流场组分分布特征以及爆轰波稳定性。计算结果表明:随着氢气质量分数的增加,旋转爆轰波成功起爆的当量比范围逐渐变窄,爆轰波压力峰值整体呈下降趋势,爆轰波传播速度呈上升趋势,速度亏损随当量比增加先减小后增大。贫燃条件下,富燃区燃料与氧化剂掺混不均匀且氧气呈条状带分布;富燃条件下,缓燃区增大缓燃加剧,富氧区边缘呈波浪状。爆轰波在当量比1.0~1.2之间传播稳定性较高;从点火到形成稳定旋转爆轰波的时间在当量比为化学恰当比时达到极小值,但随氢气质量分数增加而逐渐增加。
Abstract:In order to study the effect of equivalence ratios and hydrogen mass fractions on the propagation characteristics of a rotating detonation wave, the evolution process was numerically simulated by utilizing the kerosene and hydrogen as fuel and air as oxidant. The propagation characteristics of rotating detonation wave, the component distribution characteristics of internal flow field and the stability of detonation wave were analyzed. The simulated results showed that with the increase of hydrogen mass fractions, the range of equivalence ratios for successful initiation of a rotating detonation in the combustor was narrowed gradually. At the same time, the recorded peak pressures of detonations decreased, while the propagation speed increased with the velocity deficits showing a non-monotonous variation with the equivalence ratio. Under the fuel-lean condition, the fuel and oxidant in the fuel-rich zone were not evenly mixed and the oxygen was distributed in strips; under the fuel-rich condition, the deflagration zone increased and its reaction strength was intensified, and the edge of the oxygen-rich zone was in wavy shapes. The propagation stability of rotating detonations was higher when the equivalence ratio was 1.0 to 1.2, and the time interval from ignition to the formation of a stable rotating detonation wave reached the minimum at the stoichiometric equivalence ratio, but increased with the increase of hydrogen mass fractions.
-
表 1 化学反应及参数
Table 1. Chemical reactions and parameters
化学反应 A/10−8 E/10−7 (J/kg·mol) H2+0.5O2=H2O 9.87 3.1 C12H23+17.75O2=12CO2+11.5H2O 25.8 12.5 表 2 数值模拟计算值与C-J理论值的差异
Table 2. Differences between the calculated value of numerical simulation and the theoretical value of C-J
参数 理论值 计算值 误差 T/K 2887.86 2884.63 0.11% p/MPa 3.07 3.16 2.93% v/(m/s) 1880.9 1742.16 7.38% -
[1] GODDARD R H. Reaction combustion chamber for unconfined charges or detonative fuel fed intermittently to the combustion chamber: US2465525[P]. 1949-03-29. [2] MIAO Shikun,ZHOU Jin,LIN Zhiyong,et al. Numerical study on thermodynamic efficiency and stability of oblique detonation waves[J]. AIAA Journal,2018,56(8): 3112-3122. doi: 10.2514/1.J056887 [3] DRISCOLL R,RANDALL S,ST GEORGE A,et al. Shock-initiated combustion in an airbreathing,pulse detonation engine-crossover system[J]. AIAA Journal,2016,54(3): 936-949. doi: 10.2514/1.J054571 [4] ANAND V,GLASER A,GUTMARK E. Acoustic characterization of pulse detonation combustors[J]. AIAA Journal,2018,56(7): 2806-2815. doi: 10.2514/1.J056204 [5] KAILASANATH K. Recent developments in the research on rotating-detonation-wave engines: AIAA2017-0784 [R]. Reston,US: AIAA,2017. [6] ANAND V,GUTMARK E. Rotating detonation combustors and their similarities to rocket instabilities[J]. Progress in Energy and Combustion Science,2019,73: 182-234. doi: 10.1016/j.pecs.2019.04.001 [7] ANAND V,ST GEORGE A,DRISCOLL R,et al. Characterization of instabilities in a rotating detonation combustor[J]. International Journal of Hydrogen Energy,2015,40(46): 16649-16659. doi: 10.1016/j.ijhydene.2015.09.046 [8] ANAND V,ST GEORGE A,DRISCOLL R,et al. Investigation of rotating detonation combustor operation with H2-Air mixtures[J]. International Journal of Hydrogen Energy,2016,41(2): 1281-1292. doi: 10.1016/j.ijhydene.2015.11.041 [9] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F. Continuous spin detonation of fuel-air mixtures[J]. Combustion,Explosion and Shock Waves,2006,42(4): 463-471. doi: 10.1007/s10573-006-0076-9 [10] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F. Continuous spin detonations[J]. Journal of Propulsion and Power,2006,22(6): 1204-1216. doi: 10.2514/1.17656 [11] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F. Initiation of detonation of fuel-air mixtures in a flow-type annular combustor[J]. Combustion,Explosion,and Shock Waves,2014,50(2): 214-222. doi: 10.1134/S0010508214020130 [12] KINDRACKI J. Experimental studies of kerosene injection into a model of a detonation chamber[J]. Journal of Power of Technologies,2012,92: 80-89. [13] KINDRACKI J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures[J]. Aerospace Science and Technology,2015,43: 445-453. doi: 10.1016/j.ast.2015.04.006 [14] SHAO Yetao,LIU Meng,WANG Jianping. Numerical investigation of rotating detonation engine propulsive performance[J]. Combustion Science and Technology,2010,182(11/12): 1586-1597. [15] SHAO Yetao,LIU Meng,WANG Jianping. Continuous detonation engine and effects of different types of nozzle on its propulsion performance[J]. Chinese Journal of Aeronautics,2010,23(6): 647-652. doi: 10.1016/S1000-9361(09)60266-1 [16] XIE Qiaofeng,WEN Haocheng,LI Weihong,et al. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition[J]. Energy,2018,151: 408-419. doi: 10.1016/j.energy.2018.03.062 [17] XIE Qiaofeng,WANG Bing,WEN Haocheng,et al. Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition[J]. Journal of Propulsion and Power,2019,35(1): 141-151. doi: 10.2514/1.B37044 [18] 刘世杰. 连续旋转爆震波结构、传播模态及自持机理研究[D]. 长沙: 国防科学技术大学,2012. LIU Shijie. Investigations on the structure,rotating mode and lasting mechanism of continuous rotating detonation wave[D]. Changsha: National University of Defense Technology,2012. (in ChineseLIU Shijie. Investigations on the structure, rotating mode and lasting mechanism of continuous rotating detonation wave[D]. Changsha: National University of Defense Technology, 2012. (in Chinese) [19] LIN Wei,ZHOU Jin,LIU Shijie,et al. Experimental study on propagation mode of H2/Air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy,2015,40(4): 1980-1993. doi: 10.1016/j.ijhydene.2014.11.119 [20] 王迪. 煤油两相连续旋转爆震发动机喷注雾化及工作特性研究[D]. 长沙: 国防科学技术大学,2015. WANG Di. Study on spray atomization and working characteristics of kerosene two-phase continuous rotating detonation engine[D]. Changsha: National University of Defense Technology,2015. (in ChineseWANG Di. Study on spray atomization and working characteristics of kerosene two-phase continuous rotating detonation engine[D]. Changsha: National University of Defense Technology, 2015. (in Chinese) [21] ZHENG Hongtao,MENG Qingyang,ZHAO Ningbo,et al. Numerical investigation on H2/Air non-premixed rotating detonation engine under different equivalence ratios[J]. International Journal of Hydrogen Energy,2020,45(3): 2289-2307. doi: 10.1016/j.ijhydene.2019.11.014 [22] 王致程,严宇,王可,等. 燃烧室宽度对煤油旋转爆震波传播模态的影响[J]. 推进技术,2021,42(4): 842-850. WANG Zhicheng,YAN Yu,WANG Ke,et al. Effects of combustor width on propagation modes of rotating detonation waves utilizing liquid kerosene[J]. Journal of Propulsion Technology,2021,42(4): 842-850. (in ChineseWANG Zhicheng, YAN Yu, WANG Ke, et al. Effects of combustor width on propagation modes of rotating detonation waves utilizing liquid kerosene[J]. Journal of Propulsion Technology, 2021, 42(4): 842-850. (in Chinese) [23] 杨帆,王宇辉,李世全,等. 基于煤油的旋转爆轰发动机流场数值模拟[J]. 航空动力学报,2022,37(8): 1620-1632. YANG Fan,WANG Yuhui,LI Shiquan,et al. Numerical simulations of flow field of rotating detonation engine fueled by kerosene[J]. Journal of Aerospace Power,2022,37(8): 1620-1632. (in ChineseYANG Fan, WANG Yuhui, LI Shiquan, et al. Numerical simulations of flow field of rotating detonation engine fueled by kerosene[J]. Journal of Aerospace Power, 2022, 37(8): 1620-1632. (in Chinese) [24] 徐高,翁春生,武郁文,等. 气相与液相两相连续旋转爆轰发动机二维数值模拟[J]. 兵工学报,2020,41(增刊1): 21-29. XU Gao,WENG Chunsheng,WU Yuwen,et al. Two-dimensional numerical simulation of gas-liquid two-phase continuous rotating detonation engine[J]. Acta Armamentarii,2020,41(Suppl.1): 21-29. (in ChineseXU Gao, WENG Chunsheng, WU Yuwen, et al. Two-dimensional numerical simulation of gas-liquid two-phase continuous rotating detonation engine[J]. Acta Armamentarii, 2020, 41(Suppl.1): 21-29. (in Chinese) [25] ZHENG Quan,MENG Haolong,WENG Chunsheng,et al. Experimental research on the instability propagation characteristics of liquid kerosene rotating detonation wave[J]. Defence Technology,2020,16(6): 1106-1115. doi: 10.1016/j.dt.2020.06.028 [26] 吴明亮,郑权,续晗,等. 氢气占比对常温煤油-空气旋转爆轰波传播特性影响的数值模拟[J]. 兵工学报,2022,43(1): 86-97. WU Mingliang,ZHENG Quan,XU Han,et al. Numerical research on the influence of hydrogen proportion on the propagate-on characteristics of room temperature kerosene-air rotating detonation waves[J]. Acta Armamentarii,2022,43(1): 86-97. (in ChineseWU Mingliang, ZHENG Quan, XU Han, et al. Numerical research on the influence of hydrogen proportion on the propagate-on characteristics of room temperature kerosene-air rotating detonation waves[J]. Acta Armamentarii, 2022, 43(1): 86-97. (in Chinese) [27] 贾冰岳,张义宁,潘虎,等. 液态碳氢燃料旋转爆震发动机起爆过程试验研究[J]. 推进技术,2021,42(4): 906-914. JIA Bingyue,ZHANG Yining,PAN Hu,et al. Experimental study on initiation process of liquid hydrocarbon rotary detonation engine[J]. Journal of Propulsion Technology,2021,42(4): 906-914. (in ChineseJIA Bingyue, ZHANG Yining, PAN Hu, et al. Experimental study on initiation process of liquid hydrocarbon rotary detonation engine[J]. Journal of Propulsion Technology, 2021, 42(4): 906-914. (in Chinese)