留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参数自适应CYCBD的滚动轴承复合故障特征提取

项伟 刘淑杰 李宏坤 曹顺心 吕帅 杨晨

项伟, 刘淑杰, 李宏坤, 等. 参数自适应CYCBD的滚动轴承复合故障特征提取[J]. 航空动力学报, 2024, 39(9):20220716 doi: 10.13224/j.cnki.jasp.20220716
引用本文: 项伟, 刘淑杰, 李宏坤, 等. 参数自适应CYCBD的滚动轴承复合故障特征提取[J]. 航空动力学报, 2024, 39(9):20220716 doi: 10.13224/j.cnki.jasp.20220716
XIANG Wei, LIU Shujie, LI Hongkun, et al. Compound fault feature extraction of rolling bearing based on parameters adaptive CYCBD[J]. Journal of Aerospace Power, 2024, 39(9):20220716 doi: 10.13224/j.cnki.jasp.20220716
Citation: XIANG Wei, LIU Shujie, LI Hongkun, et al. Compound fault feature extraction of rolling bearing based on parameters adaptive CYCBD[J]. Journal of Aerospace Power, 2024, 39(9):20220716 doi: 10.13224/j.cnki.jasp.20220716

参数自适应CYCBD的滚动轴承复合故障特征提取

doi: 10.13224/j.cnki.jasp.20220716
基金项目: 国家重点研发计划项目(2019YFB2004600)
详细信息
    作者简介:

    项伟(1988-),男,工程师,博士生,主要研究方向为机械系统状态监测及故障诊断。E-mail:xiangwei8020@163.com

    通讯作者:

    李宏坤(1974-),男,教授、博士生导师,博士,主要研究方向为机械系统复杂测试、微弱信号特征提取、故障诊断与寿命预测等。E-mail:lihk@dlut.edu.cn

  • 中图分类号: V229.2;TH133.3;TH165.3

Compound fault feature extraction of rolling bearing based on parameters adaptive CYCBD

  • 摘要:

    针对滚动轴承早期故障信号特征难以准确提取与分离问题,提出参数自适应最大2阶循环平稳盲解卷积(CYCBD)的滚动轴承复合故障特征提取方法。基于不同的故障类型,以谐波能量比指标为适应度函数,采用麻雀搜索算法自适应获取解卷积的最佳滤波器长度和循环频率,利用得到的最佳参数组合对原信号中的故障成分逐一提取,并对解卷积后的信号开展包络谱分析,实现轴承复合故障的诊断。分析结果表明:所提出方法能够在强噪声背景下,清晰准确地分离出轴承故障实测信号中的内圈故障频率的1~4倍频及外圈故障的1~6次谐波分量,而其他常用方法只能提取到少数故障频率且分辨能力较低,所提出方法的诊断效果明显,具有更高的应用价值和推广性能。

     

  • 图 1  故障特征提取方法流程图

    Figure 1.  The flowchart of fault feature extraction method

    图 2  仿真信号波形图与包络谱

    Figure 2.  Waveform and envelope spectrum of simulation signal

    图 3  外圈故障参数寻优曲线

    Figure 3.  Parameter optimization curve of outer ring fault

    图 4  仿真信号外圈故障CYCBD解卷积结果

    Figure 4.  CYCBD deconvolution result for outer ring fault of simulation signal

    图 5  内圈故障参数寻优曲线

    Figure 5.  Parameter optimization curve of inner ring fault

    图 6  仿真信号内圈故障CYCBD解卷积结果

    Figure 6.  CYCBD deconvolution result for inner ring fault of simulation signal

    图 7  内圈故障CYCBD解卷积结果(理论参数)

    Figure 7.  CYCBD deconvolution result for inner ring fault (theoretical parameters)

    图 8  振动实验台

    Figure 8.  Vibration test bench

    图 9  实测信号波形图与包络谱

    Figure 9.  Waveform and envelope spectrum of measured signal

    图 10  实测信号内圈故障CYCBD解卷积结果

    Figure 10.  CYCBD deconvolution result for inner ring fault of measured signal

    图 11  实测信号外圈故障CYCBD解卷积结果

    Figure 11.  CYCBD deconvolution result for outer ring fault of measured signal

    图 12  MED对外圈故障的提取结果

    Figure 12.  MED extraction results of outer ring fault

    图 13  MCKD对外圈故障的提取结果

    Figure 13.  MCKD extraction results of outer ring fault

    表  1  故障仿真信号参数表

    Table  1.   Parameters table of fault simulation signal

    参数 数值 参数 数值
    An/g 1 Tn/s 1/165
    Aw/g 1 Tw/s 1/100
    βn 1000 f1/Hz 52
    βw 800 f2/Hz 73
    fn1/Hz 3000 fr/Hz 20
    fn2/Hz 2000 Cn 0.5
    下载: 导出CSV

    表  2  滚动轴承技术参数

    Table  2.   Technical parameters of rolling bearing

    参数数值
    轴承节径/mm38.5
    滚子直径/mm7.5
    滚子数量13
    接触角/ (°)0
    下载: 导出CSV
  • [1] YASIR M N,KOH B H. Data decomposition techniques with multi-scale permutation entropy calculations for bearing fault diagnosis[J]. Sensors,2018,18(4): 1278. doi: 10.3390/s18041278
    [2] MA Haoqun,FENG Zhipeng. Planet bearing fault diagnosis using multipoint Optimal Minimum Entropy Deconvolution Adjusted[J]. Journal of Sound and Vibration,2019,449: 235-273. doi: 10.1016/j.jsv.2019.02.024
    [3] ZHENG Kai,YANG Dewei,ZHANG Bin,et al. A group sparse representation method in frequency domain with adaptive parameters optimization of detecting incipient rolling bearing fault[J]. Journal of Sound and Vibration,2019,462: 114931. doi: 10.1016/j.jsv.2019.114931
    [4] 李红贤,韩延,吴敬涛,等. 基于ICA包络增强MEMD的滚动轴承故障诊断[J]. 航空动力学报,2021,36(2): 405-412.
    [5] ENDO H,RANDALL R B. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter[J]. Mechanical Systems and Signal Processing,2007,21(2): 906-919. doi: 10.1016/j.ymssp.2006.02.005
    [6] MCDONALD G L,ZHAO Qing,ZUO M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing,2012,33: 237-255. doi: 10.1016/j.ymssp.2012.06.010
    [7] 张先辉,李新民,金小强. 基于MED和LMD的自动倾斜器轴承广义Shannon熵谱分析[J]. 航空动力学报,2019,34(4): 764-771.
    [8] MIAO Yonghao,ZHAO Ming,LIN Jing,et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing,2017,92: 173-195. doi: 10.1016/j.ymssp.2017.01.033
    [9] BUZZONI M,ANTONI J,D’ELIA G. Blind deconvolution based on cyclostationarity maximization and its application to fault identification[J]. Journal of Sound and Vibration,2018,432: 569-601. doi: 10.1016/j.jsv.2018.06.055
    [10] 黄包裕,张永祥,赵磊. 基于布谷鸟搜索算法和最大二阶循环平稳盲解卷积的滚动轴承故障诊断方法[J]. 机械工程学报,2021,57(9): 99-107.
    [11] 赵晓涛,孙虎儿,姚巍. 基于CYCBD和包络谱的滚动轴承微弱故障特征提取[J]. 机械传动,2020,44(4): 165-169,176.
    [12] 朱丹宸,张永祥,何伟,等. 基于自适应CYCBD和互相关谱的滚动轴承复合故障诊断方法[J]. 振动与冲击,2020,39(11): 116-122,128.
    [13] ZHAO Ming,LIN Jing,MIAO Yonghao,et al. Detection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearings[J]. Measurement,2016,91: 421-439. doi: 10.1016/j.measurement.2016.05.068
    [14] 罗忠,徐迪,李雷,等. 基于改进二阶循环平稳解卷积的轴承故障检测方法[J]. 东北大学学报(自然科学版),2021,42(5): 673-678. doi: 10.12068/j.issn.1005-3026.2021.05.010
    [15] WANG Xiaolong,TANG Guiji,HE Yuling. Application of RSSD-OCYCBD strategy in enhanced fault detection of rolling bearing[J]. Complexity,2020,2020: 5424236.
    [16] 刘宇涛,孙虎儿. 基于粒子群优化的CYCBD在滚动轴承故障特征提取的应用研究[J]. 机械传动,2021,45(2): 171-176.
    [17] XUE Jiankai,SHEN Bo. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering,2020,8(1): 22-34. doi: 10.1080/21642583.2019.1708830
    [18] YUAN Jianhua,ZHAO Ziwei,LIU Yaping,et al. DMPPT control of photovoltaic microgrid based on improved sparrow search algorithm[J]. IEEE Access,2960,9: 16623-16629.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  28
  • HTML浏览量:  36
  • PDF量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 网络出版日期:  2024-01-27

目录

    /

    返回文章
    返回