留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渐缩型连接孔对双层壁冲击冷却的影响

刘雨松 朱华 严彪 李亮

刘雨松, 朱华, 严彪, 等. 渐缩型连接孔对双层壁冲击冷却的影响[J]. 航空动力学报, 2024, 39(X):20220718 doi: 10.13224/j.cnki.jasp.20220718
引用本文: 刘雨松, 朱华, 严彪, 等. 渐缩型连接孔对双层壁冲击冷却的影响[J]. 航空动力学报, 2024, 39(X):20220718 doi: 10.13224/j.cnki.jasp.20220718
LIU Yusong, ZHU Hua, YAN Biao, et al. Influence of tapered bridge holes on impingement double wall cooling for gas turbine blade[J]. Journal of Aerospace Power, 2024, 39(X):20220718 doi: 10.13224/j.cnki.jasp.20220718
Citation: LIU Yusong, ZHU Hua, YAN Biao, et al. Influence of tapered bridge holes on impingement double wall cooling for gas turbine blade[J]. Journal of Aerospace Power, 2024, 39(X):20220718 doi: 10.13224/j.cnki.jasp.20220718

渐缩型连接孔对双层壁冲击冷却的影响

doi: 10.13224/j.cnki.jasp.20220718
基金项目: 国家科技重大专项(2017-Ⅰ-0009-0010)
详细信息
    作者简介:

    刘雨松(1997-),男,硕士生,研究方向为燃气涡轮叶片冷却技术。E-mail:3318986768@qq.com

    通讯作者:

    李亮(1974-),男,教授、博士生导师,博士,研究方向为燃气轮机高温透平叶片冷却技术、汽轮机通流优化、湿蒸汽/湿空气两相流。E-mail: liliang@mail.xjtu.edu.cn

  • 中图分类号: V231.1

Influence of tapered bridge holes on impingement double wall cooling for gas turbine blade

  • 摘要:

    为探究叶片前缘双层壁冲击冷却中连接孔结构对整体流动和换热特性的影响,建立了具有0°、5°、10°、15°、20°倾角的5个渐缩型连接孔冲击冷却模型,采用ANSYS CFX进行数值模拟。结果表明:在双层壁冲击冷却结构中将连接孔调整为渐缩形态能显著提升综合换热能力。当连接孔倾斜角从0°增大到20°,其倾角变化对结构内、外腔室流动损失影响不大;内靶面平均努塞尔数随倾角的变化几乎不变,但外靶面换热强度随着倾角增大先增强后削弱。当连接孔倾角为15°时,外靶面平均努塞尔数最大,相比标准结构提升了19.7%;总综合换热因子随连接孔倾斜角的增大呈现先增大后减小的趋势,倾角为15°时,综合换热因子达到最高,相比于标准结构提升了12.15%。

     

  • 图 1  连接孔倾角示意图

    Figure 1.  Diagram of bridge hole angle

    图 2  部分冲击冷却结构三维模型

    Figure 2.  Three-dimensional models of partial configurations(unit:mm)

    图 3  部分结构几何尺寸 (单位:mm)

    Figure 3.  Geometrical dimensions of partial configurations (unit: mm)

    图 4  计算模型1网格示意图

    Figure 4.  Grid diagram of simulation model1

    图 5  结构1 6-0°在不同计算网格数量下Nua的分布

    Figure 5.  Nua of mode1 6-0° with number change of grids

    图 6  Liu等的湍流模型数值计算结果与实验数据对比[18]

    Figure 6.  Liu et al comparison of numerical computational results with experimental data[18]

    图 7  5种结构不同截面的VXZ云图及流线图

    Figure 7.  VXZ contours and streamlines of five models for different planes

    图 8  通过5排连接孔与外腔室交接面处的冷气速度平均值(Va,bri)随α分布示意图

    Figure 8.  Average velocity for cooling air with α at the interface between 5 bridge holes and outer chamber

    图 9  5种结构YZ截面的VYZ云图及流线图

    Figure 9.  VYZ contours and streamlines of five models for YZ plane

    图 10  5种结构内腔室出口流量qex,in及外腔室出口流量qex,outα分布示意图

    Figure 10.  Exit mass flows for inner chamber (qex,in) and outer chamber (qex,out) of five models are distributed with α

    图 11  5种结构Cpt在内、外腔室随α分布示意图

    Figure 11.  Cpt of five models are distributed with α for inner chamber and outer chamber

    图 12  5种结构靶面Nu分布云图

    Figure 12.  Nu contours of five models in the target wall

    图 13  5种结构Nuac,in沿轴向分布示意图

    Figure 13.  Nuac,in of five models are distributed along the axial direction

    图 14  5种结构Nuac,out沿轴向分布示意图

    Figure 14.  Nuac,out of five models are distributed along the axial direction

    表  1  5种结构的各项参数对比

    Table  1.   Comparison of parameters for the five configurations

    参数α/(°)
    05101520
    Rein51854767445843934346
    Reout15151739187519111937
    Nu0,in18.7417.5216.6116.4116.27
    Nu0,out7.007.828.308.438.52
    fin0.0710.0690.0710.0700.071
    fout0.0310.0300.0300.0300.030
    ηin5.636.146.456.536.56
    ηout2.382.292.232.362.24
    ηt4.284.544.694.804.77
    下载: 导出CSV
  • [1] 杜长河,李森,李亮,等. 叶片前缘旋流蒸汽冷却流动和传热的数值研究[J]. 西安交通大学学报,2015,49(10): 72-78. DU Changhe,LI Sen,LI Liang,et al. Numerical study on characteristics of flow and heat transfer of steam vortex cooling for blade leading edges[J]. Journal of Xi’an Jiaotong University,2015,49(10): 72-78. (in Chinese doi: 10.7652/xjtuxb201510012

    DU Changhe, LI Sen, LI Liang, et al. Numerical study on characteristics of flow and heat transfer of steam vortex cooling for blade leading edges[J]. Journal of Xi’an Jiaotong University, 2015, 49(10): 72-78. (in Chinese) doi: 10.7652/xjtuxb201510012
    [2] 王杰枫,杜长河,吴凡,等. 喷嘴周向位置和旋流腔拔模斜度对旋流冷却的影响[J]. 西安交通大学学报,2018,52(11): 65-72. WANG Jiefeng,DU Changhe,WU Fan,et al. Effects of jet nozzle circumferential position and vortex chamber draft angle on the flow and heat transfer characteristics of vortex cooling[J]. Journal of Xi’an Jiaotong University,2018,52(11): 65-72. (in Chinese

    WANG Jiefeng, DU Changhe, WU Fan, et al. Effects of jet nozzle circumferential position and vortex chamber draft angle on the flow and heat transfer characteristics of vortex cooling[J]. Journal of Xi’an Jiaotong University, 2018, 52(11): 65-72. (in Chinese)
    [3] LIAO Gaoliang,WANG Xinjun,LI Jun,et al. A numerical comparison of thermal performance of in-line pin–fins in a wedge duct with three kinds of coolant[J]. International Journal of Heat and Mass Transfer,2014,77: 1033-1042. doi: 10.1016/j.ijheatmasstransfer.2014.06.010
    [4] 杨力. 基于冲击的燃气轮机透平叶片冷却结构研究[D]. 北京: 清华大学,2015. YANG Li. Research on the application of impingement cooling in gas turbineblades[D]. Beijing: Tsinghua University,2015. (in Chinese

    YANG Li. Research on the application of impingement cooling in gas turbineblades[D]. Beijing: Tsinghua University, 2015. (in Chinese)
    [5] DEVORE M A,PAAUWE C S. Turbine airfoil with improved cooling: US20070166161[P]. 2007-07-19.
    [6] CHYU M K,SIW S C. Recent advances of internal cooling techniques for gas turbine airfoils[J]. Journal of Thermal Science and Engineering Applications,2013,5(2): 021008. doi: 10.1115/1.4023829
    [7] HAN J C,DUTTA S,EKKAD S. Gas turbine heat transfer and cooling technology[M]. 2nd ed. New York: Taylor & Francis Group,2012: 14-67.
    [8] ZHANG Jingzhou,XIE Hao,YANG Chengfeng. Numerical study of flow and heat transfer characteristics of impingement/effusion cooling[J]. Chinese Journal of Aeronautics,2009,22(4): 343-348. doi: 10.1016/S1000-9361(08)60109-0
    [9] STOAKES P,EKKAD S. Optimized impingement configurations for double wall cooling applications[C]//Proceedings of ASME Turbo Expo: Turbine Technical Conference and Exposition. Vancouver,Canada: ASME ,2012: 1535-1543.
    [10] TAN Xiaoming,ZHANG Jingzhou,XU Huasheng. Experimental investigation on impingement/effusion cooling with short normal injection holes[J]. International Communications in Heat and Mass Transfer,2015,69: 1-10. doi: 10.1016/j.icheatmasstransfer.2015.09.005
    [11] 郑杰,朱惠人,郭涛,等. 微尺度冲击冷却通道换热特性实验研究[J]. 推进技术,2015,36(1): 82-88. ZHENG Jie,ZHU Huiren,GUO Tao,et al. Experimental investigation on jet impingement heat transfer for micro-channel[J]. Journal of Propulsion Technology,2015,36(1): 82-88. (in Chinese

    ZHENG Jie, ZHU Huiren, GUO Tao, et al. Experimental investigation on jet impingement heat transfer for micro-channel[J]. Journal of Propulsion Technology, 2015, 36(1): 82-88. (in Chinese)
    [12] 李广超,蒋蔚,刘永泉,等. 粗糙度对不同尺度的双层壁结构冲击换热特性影响[J]. 推进技术,2017,38(7): 1563-1571. LI Guangchao,JIANG Wei,LIU Yongquan,et al. Effects of roughness on impacting heat transfer in different scale double-wall[J]. Journal of Propulsion Technology,2017,38(7): 1563-1571. (in Chinese

    LI Guangchao, JIANG Wei, LIU Yongquan, et al. Effects of roughness on impacting heat transfer in different scale double-wall[J]. Journal of Propulsion Technology, 2017, 38(7): 1563-1571. (in Chinese)
    [13] RAO Yu,LIU Yuyang,WAN Chaoyi. Multiple-jet impingement heat transfer in double-wall cooling structures with pin fins and effusion holes[J]. International Journal of Thermal Sciences,2018,133: 106-119. doi: 10.1016/j.ijthermalsci.2018.07.021
    [14] REN Zhong,VANGA S R,ROGERS N,et al. Internal and external cooling of a full coverage effusion cooling plate: effects of double wall configuration and conditions[J]. International Journal of Thermal Sciences,2018,124: 36-49. doi: 10.1016/j.ijthermalsci.2017.09.021
    [15] 韦宏,祖迎庆. 双层壁冷却结构中多排射流冲击冷却的换热和流阻特性[J]. 航空动力学报,2021,36(8): 1621-1632. WEI Hong,ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power,2021,36(8): 1621-1632. (in Chinese

    WEI Hong, ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power, 2021, 36(8): 1621-1632. (in Chinese)
    [16] KWON H,LIGRANI P M,VANGA S R,et al. Flow structure and surface heat transfer from numerical predictions for a double wall effusion plate with impingement jet array cooling[J]. International Journal of Heat and Mass Transfer,2022,183: 122049. doi: 10.1016/j.ijheatmasstransfer.2021.122049
    [17] FAN X J,LI L,WANG J F,et al. Heat transfer enhancement for gas turbine blade leading edge cooling using curved double-wall/vortex cooling with various disturbing objects[C]//ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. 2019.
    [18] LIU Zhao,YE Lv,WANG C,et al. Numerical simulation on impingement and film composite cooling of blade leading edge model for gas turbine[J]. Applied Thermal Engineering,2014,73(2): 1432-1443. doi: 10.1016/j.applthermaleng.2014.05.060
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  17
  • HTML浏览量:  19
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 网络出版日期:  2024-02-20

目录

    /

    返回文章
    返回