留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气液加载方式的机匣热内压试验方法

杨峰 王新 刘德军 王晓森 雷霆 周天朋

杨峰, 王新, 刘德军, 等. 基于气液加载方式的机匣热内压试验方法[J]. 航空动力学报, 2023, 38(3):535-545 doi: 10.13224/j.cnki.jasp.20220721
引用本文: 杨峰, 王新, 刘德军, 等. 基于气液加载方式的机匣热内压试验方法[J]. 航空动力学报, 2023, 38(3):535-545 doi: 10.13224/j.cnki.jasp.20220721
YANG Feng, WANG Xin, LIU Dejun, et al. Thermal internal pressure test method of casing based on gas-liquid loading[J]. Journal of Aerospace Power, 2023, 38(3):535-545 doi: 10.13224/j.cnki.jasp.20220721
Citation: YANG Feng, WANG Xin, LIU Dejun, et al. Thermal internal pressure test method of casing based on gas-liquid loading[J]. Journal of Aerospace Power, 2023, 38(3):535-545 doi: 10.13224/j.cnki.jasp.20220721

基于气液加载方式的机匣热内压试验方法

doi: 10.13224/j.cnki.jasp.20220721
详细信息
    作者简介:

    杨峰(1988-),男,高级工程师,硕士,主要从事航空发动机机匣强度研究

  • 中图分类号: V231.1

Thermal internal pressure test method of casing based on gas-liquid loading

  • 摘要:

    提出了一种基于气液加载方式的航空发动机机匣热内压试验方法,用于模拟机匣件在典型工况下的温度和内压联合加载考核。采用气液加压装置实现温度和压力加载介质的解耦,以高温耐压油作为温度加载介质,利用仿形电加热器实现热载荷施加,以高压稳定气源作为压力载荷源对气液压控制腔体加压,通过对加压模型的理论分析指导压力载荷的定量控制。验证表明试验方法能够有效实现温度和压力载荷的精确控制,解决了液压系统难以实现高温控制和气压系统温度控制均匀性差的问题,同时也有效避免了气压加载方式开展破坏试验时的爆破现象。基于气液加压方式的试验方法能够有效应用于机匣件的热内压考核,实现温度控制精度优于±3 K和压力加载过程定量控制。

     

  • 图 1  试验系统原理

    1 受试腔体;2 气液压控制腔体;3 综合控制器;4 可控硅;5 温度传感器;6 高压稳定气源;7 高压比例阀;8 排气电磁阀;9 压力传感器。

    Figure 1.  Schematic diagram of test system

    图 2  气液加压装置原理

    10 受试机匣件;11 受试腔底座;12 下模拟段;13 上模拟段;14 电加热器支撑板;15 电加热器;16 受试腔内承载筒;17 耐高温O型密封圈;18 密封紧固螺栓;19 受试腔体排气孔;21 气液压腔排气孔;22 气液压腔进气孔;23 气液压腔压力监测孔;24 气液压腔进油孔;25 气液压腔排油孔;26 腔体连通管;27 耐高温液压油;28 高压气体。

    Figure 2.  Principle of gas-liquid pressurization device

    图 3  环形加热器结构

    Figure 3.  Ring heater structure

    图 4  压力加载数值分析模型

    Figure 4.  Pressure loading numerical analysis model

    图 5  管道壅塞时不同进气孔尺寸对应的压力曲线(ϕout=4.0 mm、 ϕleak=0 mm)

    Figure 5.  Pressure curves corresponding to different inlet hole sizes when the pipeline is blocked (ϕout=4.0 mm, ϕleak=0 mm)

    图 6  管道不壅塞时不同进气孔尺寸对应的压力曲线(ϕout=4.0 mm、 ϕleak=0 mm)

    Figure 6.  Pressure curves corresponding to different inlet hole sizes when the pipeline is not blocked (ϕout=4.0 mm, ϕleak=0 mm)

    图 7  不同排气孔尺寸对应的压力曲线(ϕin=3.0 mm、ϕleak=0 mm)

    Figure 7.  Pressure curves corresponding to different outlet hole sizes (ϕin=3.0 mm, ϕleak=0 mm)

    图 8  不同漏气孔尺寸对应的压力曲线(ϕin=3.0 mm、 ϕout=5.0 mm)

    Figure 8.  Pressure curves corresponding to different leak hole sizes (ϕin=3.0 mm, ϕout=5.0 mm)

    图 9  不同目标压力对应的压力曲线(ϕin=3.0 mm、 ϕout=5.0 mm、 ϕleak=0 mm)

    Figure 9.  Pressure curves corresponding to different target pressures (ϕin=3.0 mm, ϕout=5.0 mm, ϕleak=0 mm)

    图 10  压力加载过程中动密封结构变化

    Figure 10.  Change of dynamic seal structure during pressure loading

    图 11  上模拟段位移仿真计算结果

    Figure 11.  Displacement simulation calculation results of upper cabin

    图 12  内承载筒位移仿真计算结果

    Figure 12.  Displacement simulation calculation results of the inner bearing cylinder

    图 13  典型航空发动机机匣热内压试验实施

    Figure 13.  Implementation of thermal internal pressure test for typical aero-engine casing

    图 14  典型温度载荷的试验控制曲线

    Figure 14.  Test control curves for typical temperature loads

    图 15  典型压力载荷的理论分析和试验控制曲线

    Figure 15.  Theoretical analysis and test control curves for typical pressure loads

    图 16  机匣件破坏试验的失效形式

    Figure 16.  Failure mode of aero-engine casing damage test

  • [1] 王云. 航空发动机原理[M]. 北京: 北京航空航天大学出版社, 2011.
    [2] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第17册 载荷及机匣承力件强度分析[M]. 北京: 航空工业出版社, 2001.
    [3] 江和甫,古远兴,卿华. 航空发动机的新结构及其强度设计[J]. 燃气涡轮试验与研究,2007,20(2): 1-4. doi: 10.3969/j.issn.1672-2620.2007.02.001

    JIANG Hefu,GU Yuanxing,QING Hua. New structure and strength design of aero-engine[J]. Gas Turbine Experiment and Research,2007,20(2): 1-4. (in Chinese) doi: 10.3969/j.issn.1672-2620.2007.02.001
    [4] 王强, 郑日恒, 陈懋章. 航空发动机科学技术的发展与创新[J]. 科技导报, 2021, 39(3): 59-70.

    WANG qiang, ZHENG Riheng, CHEN Maozhang. Development and innovation of aeroengine science and technology[J]. Science & Technology Review, 2021, 39(3): 59-70. (in Chinese)
    [5] THOMAS R D, MICHAEL J H. Engine wars competition for U. S. fighter engine production[R]. AIAA 1998-3115, 1998.
    [6] KUMAR K,SHARATH R,BABU N,et al. Structural design analysis of bypass casing for an aero engine[J]. International Research Journal of Engineering and Technology,2019,6(6): 1483-1488.
    [7] ARADHYA K, GOUD M R, PATEL S K, et al. Mechanical design of bypass casing for aero gas turbine[R]. Bangalore, Indian: the 4th Conference on Air Breathing Engines and Aerospace Propulsion, 1998.
    [8] 田大可, 袁长龙, 徐雪, 等. 基于气动性能优化的某型发动机外涵机匣结构设计[J]. 航空发动机, 2016, 42(4): 43-46.

    TIAN Dake, YUAN Changlong, XU Xue, et al. Research on structure design of the bypass casing for a certain type aero-engine based on aerodynamic performance optimization[J]. Aeroengine, 2016, 42(4): 43-46. (in Chinese)
    [9] 程欢欢,柳翰羽,刘韬,等. 航空发动机外涵机匣静强度试验技术研究[J]. 科技与创新,2021(24): 10-11, 16. doi: 10.15913/j.cnki.kjycx.2021.24.003

    CHENG Huanhuan,LIU Hanyu,LIU Tao,et al. Study on static strength test technology of aero engine outer culvert casing[J]. Science and Technology & Innovation,2021(24): 10-11, 16. (in Chinese) doi: 10.15913/j.cnki.kjycx.2021.24.003
    [10] 张呈波,雷霆,李杰,等. 航空发动机燃烧室外机匣压力试验方法与系统[J]. 环境技术,2021,39(4): 212-216. doi: 10.3969/j.issn.1004-7204.2021.04.045

    ZHANG Chengbo,LEI Ting,LI Jie,et al. Pressure test method and system of aero-engine combustor outer casing[J]. Environmental Technology,2021,39(4): 212-216. (in Chinese) doi: 10.3969/j.issn.1004-7204.2021.04.045
    [11] 周焕阳,张根,姚明格,等. 多轴载荷下发动机中介机匣强度试验方法研究[J]. 环境技术,2022,40(2): 192-197. doi: 10.3969/j.issn.1004-7204.2022.02.041

    ZHOU Huanyang,ZHANG Gen,YAO Mingge,et al. Research on strength test method under multiaxial load of engine intermediate casing[J]. Environmental Technology,2022,40(2): 192-197. (in Chinese) doi: 10.3969/j.issn.1004-7204.2022.02.041
    [12] 朱杰. 复杂结构充压试验控制方法及其安全保护措施[J]. 工程与试验,2018,58(1): 86-89. doi: 10.3969/j.issn.1674-3407.2018.01.021

    ZHU Jie. Control method for pressurizing test of complex structure and safety measures[J]. Engineering & Test,2018,58(1): 86-89. (in Chinese) doi: 10.3969/j.issn.1674-3407.2018.01.021
    [13] 赵凯, 刘鹏飞, 刘波浪, 等. 树脂基复合材料外涵道机匣的研制与应用[J]. 复合材料科学与工程, 2020(4): 112-116.

    ZHAO Kai, LIU Pengfei, LIU Bolang, et al. Development and application of bypass casing made of resin matrix composite aero-engine[J]. Composites Science and Engineering, 2020(4): 112-116. (in Chinese)
    [14] 王绍凯, 马绪强, 李敏, 等. 飞行器结构用复合材料四大核心技术及发展[J]. 玻璃钢/复合材料, 2014(9): 76-84.

    WANG Shaokai, MA Xuqiang, LI Min, et al. Four key technologies of structural composites for aircraft applications and its development[J]. Fiber Reinforced Plastics/Composites, 2014(9): 76-84. (in Chinese)
    [15] 映红, 赵智姝, 韩勐. 复合材料在飞机结构上的广泛应用[J]. 装备制造技术, 2011(4): 138-140.

    YING Hong, ZHAO Zhishu, HAN Meng. The wide application of composite material in the aircraft structure[J]. Equipment Manufacturing Technology, 2011(4): 138-140. (in Chinese)
    [16] 梁恒亮, 陈玉龙, 周洪飞. 耐温350 ℃以上复合材料外涵机匣模拟件的研制[J]. 复合材料科学与工程, 2022(2): 112-118, 128.LIANG Hengliang, CHEN Yulong, ZHOU Hongfei. Study on the composite simulator of the aero-engine bypass duct with resistance above 350 ℃[J]. Composites Science and Engineering, 2022(2): 112-118, 128. (in Chinese)
    [17] 杨峰,陈玉龙,罗旺,等. TG800碳纤维/聚酰亚胺树脂复合材料带翻边开口圆柱壳机匣件高温气动载荷下的承载性能[J]. 复合材料学报,2021,38(7): 2184-2195. doi: 10.13801/j.cnki.fhclxb.20210326.001

    YANG Feng,CHEN Yulong,LUO Wang,et al. Load-bearing capability of TG800 carbon fiber/polyimide resin composite cylindrical casing with flange and window under high-temperature aerodynamic load[J]. Acta Materiae Compositae Sinica,2021,38(7): 2184-2195. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20210326.001
    [18] 王琦, 丛琳华, 王振亚, 等. 一种发动机机匣高温高压试验装置: CN201510909048.9[P]. 2018-04-13.
    [19] 郭建英, 秦同, 苏瀚生, 等. 机匣热压联合加载试验装置及其使用方法: CN201911234912.4[P]. 2021-07-20.
    [20] 杨峰,史剑,姚明格,等. 航空发动机复材外涵机匣静热强度试验方法研究[J]. 装备环境工程,2021,18(6): 30-35.

    YANG Feng,SHI Jian,YAO Mingge,et al. Research on static thermal strength test of composite bypass casing of aero-engine[J]. Equipment Environmental Engineering,2021,18(6): 30-35. (in Chinese)
    [21] 张佳斌. 结构热强度试验典型热-压耦合试验方法研究[J]. 工程与试验,2020,60(4): 31-33,63. doi: 10.3969/j.issn.1674-3407.2020.04.009

    ZHANG Jiabin. Study on typical heat-pressure coupling test method for structural thermal strength test[J]. Engineering & Test,2020,60(4): 31-33,63. (in Chinese) doi: 10.3969/j.issn.1674-3407.2020.04.009
    [22] WOODWARD J L,MUDAN K S. Liquid and gas discharge rates through holes in process vessels[J]. Journal of Loss Prevention in the Process Industries,1991,4(3): 161-165. doi: 10.1016/0950-4230(91)80031-O
    [23] MONTIEL H,VILCHEZ J A,CASAL J. Mathematical modelling of accidental gas releases[J]. Journal of Hazardous Materials,1998,59: 211-233.
    [24] LENCLUD J,VENART J. Single and two-phase discharge from a pressurized vessel[J]. Revue Générale de Thermique,1996,35: 503-516.
    [25] DONG Y H,GAO H L,ZHOU J E,et al. Evaluation of gas release rate through holes in pipelines[J]. Journal of Loss Prevention in The Process Industries,2002,15: 423-428.
    [26] JAWAD J,SOARES R,VÉCHOT L,et al. Dynamics of gas flow between interconnected vessels: experiments and simulations[J]. Process Safety and Environmental Protection,2020,134: 381-391.
    [27] YUAN F,ZENG Y,KHOO B C. A new real-gas model to characterize and predict gas leakage for high-pressure gas pipeline[J]. Journal of Loss Prevention in the Process Industries,2022,74: 104650.1-104650.14.
    [28] TURNER T L, ASH R L. Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems[R]. NASA TP-3387, 1994.
    [29] 陈皓,李嘉伟,史航,等. 涡轮机匣热辐射-对流耦合换热特性数值计算与实验测试[J]. 航空动力学报,2022,37(8): 1597-1606.

    CHEN Hao,LI Jiawei,SHI Hang,et al. Numerical calculation and experimental test of heat radiation-convection coupling heat transfer characteristics of turbine casing[J]. Journal of Aerospace Power,2022,37(8): 1597-1606. (in Chinese)
    [30] 曾祥虎,许瑛,张悦,等. 机匣法兰螺栓连接建模和密封性能分析[J]. 航空工程进展,2021,12(2): 143-149. doi: 10.16615/j.cnki.1674-8190.2021.02.17

    ZENG Xianghu,XU Ying,ZHANG Yue,et al. Modeling of casing flange bolt connection and analysis of sealing performance[J]. Advances in Aeronautical Science and Engineering,2021,12(2): 143-149. (in Chinese) doi: 10.16615/j.cnki.1674-8190.2021.02.17
    [31] 艾延廷,李传喜,田晶,等. 基于环形板理论的机匣安装边密封特性分析方法研究[J]. 推进技术,2021,42(2): 431-439. doi: 10.13675/j.cnki.tjjs.190567

    AI Yanting,LI Chuanxi,TIAN Jin,et al. Research on sealing characteristic analysis method of casing installation edge based on annular plate theory[J]. Journal of Propulsion Technology,2021,42(2): 431-439. (in Chinese) doi: 10.13675/j.cnki.tjjs.190567
    [32] 马奔奔,李源,王世建,等. 纵向无垫圈螺栓连接系统的密封性分析和轻量化设计[J]. 强度与环境,2019,46(4): 11-18. doi: 10.19447/j.cnki.11-1773/v.2019.04.002

    MA Benben,LI Yuan,WANG Shijian,et al. Lightweight optimal design and sealing analysis for longitudinal bolted joints without gaskets[J]. Structure & Environment Engineering,2019,46(4): 11-18. (in Chinese) doi: 10.19447/j.cnki.11-1773/v.2019.04.002
  • 加载中
图(16)
计量
  • 文章访问数:  154
  • HTML浏览量:  63
  • PDF量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-24
  • 网络出版日期:  2023-01-12

目录

    /

    返回文章
    返回