Thermal internal pressure test method of casing based on gas-liquid loading
-
摘要:
提出了一种基于气液加载方式的航空发动机机匣热内压试验方法,用于模拟机匣件在典型工况下的温度和内压联合加载考核。采用气液加压装置实现温度和压力加载介质的解耦,以高温耐压油作为温度加载介质,利用仿形电加热器实现热载荷施加,以高压稳定气源作为压力载荷源对气液压控制腔体加压,通过对加压模型的理论分析指导压力载荷的定量控制。验证表明试验方法能够有效实现温度和压力载荷的精确控制,解决了液压系统难以实现高温控制和气压系统温度控制均匀性差的问题,同时也有效避免了气压加载方式开展破坏试验时的爆破现象。基于气液加压方式的试验方法能够有效应用于机匣件的热内压考核,实现温度控制精度优于±3 K和压力加载过程定量控制。
Abstract:A thermal internal pressure test method based on gas-liquid loading was designed for the load-bearing test of aero-engine casing under temperature and internal pressure load. The gas-liquid loading device can decouple temperature and pressure loading. This device used high-temperature oil as the heating medium to heat up aero-engine casing through an electric heater with the same shape as the aero-engine casing. The pressure loading system used a high-pressure air source to pressurize the cavity of the device to achieve internal pressure loading on aero-engine casing. Quantitative control of pressure load was guided by theoretical analysis of pressure model. Tests showed that the method can effectively control the temperature and pressure loading accurately. While avoiding the difficulty of using hydraulic loading method to achieve high temperature loading, this method solved the problem of poor temperature uniformity in the test using air-pressure loading method. This method also effectively avoided the blasting phenomenon if the air-pressure loading method applied to the destruction test. Results showed that the test method based on the gas-liquid loading method can be effectively applied to the thermal internal pressure test of aero-engine casing. The control accuracy of temperature load was better than ±3 K. The pressure loading process can be quantitatively controlled.
-
-
[1] 王云. 航空发动机原理[M]. 北京: 北京航空航天大学出版社, 2011. [2] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第17册 载荷及机匣承力件强度分析[M]. 北京: 航空工业出版社, 2001. [3] 江和甫,古远兴,卿华. 航空发动机的新结构及其强度设计[J]. 燃气涡轮试验与研究,2007,20(2): 1-4. doi: 10.3969/j.issn.1672-2620.2007.02.001JIANG Hefu,GU Yuanxing,QING Hua. New structure and strength design of aero-engine[J]. Gas Turbine Experiment and Research,2007,20(2): 1-4. (in Chinese) doi: 10.3969/j.issn.1672-2620.2007.02.001 [4] 王强, 郑日恒, 陈懋章. 航空发动机科学技术的发展与创新[J]. 科技导报, 2021, 39(3): 59-70.WANG qiang, ZHENG Riheng, CHEN Maozhang. Development and innovation of aeroengine science and technology[J]. Science & Technology Review, 2021, 39(3): 59-70. (in Chinese) [5] THOMAS R D, MICHAEL J H. Engine wars competition for U. S. fighter engine production[R]. AIAA 1998-3115, 1998. [6] KUMAR K,SHARATH R,BABU N,et al. Structural design analysis of bypass casing for an aero engine[J]. International Research Journal of Engineering and Technology,2019,6(6): 1483-1488. [7] ARADHYA K, GOUD M R, PATEL S K, et al. Mechanical design of bypass casing for aero gas turbine[R]. Bangalore, Indian: the 4th Conference on Air Breathing Engines and Aerospace Propulsion, 1998. [8] 田大可, 袁长龙, 徐雪, 等. 基于气动性能优化的某型发动机外涵机匣结构设计[J]. 航空发动机, 2016, 42(4): 43-46.TIAN Dake, YUAN Changlong, XU Xue, et al. Research on structure design of the bypass casing for a certain type aero-engine based on aerodynamic performance optimization[J]. Aeroengine, 2016, 42(4): 43-46. (in Chinese) [9] 程欢欢,柳翰羽,刘韬,等. 航空发动机外涵机匣静强度试验技术研究[J]. 科技与创新,2021(24): 10-11, 16. doi: 10.15913/j.cnki.kjycx.2021.24.003CHENG Huanhuan,LIU Hanyu,LIU Tao,et al. Study on static strength test technology of aero engine outer culvert casing[J]. Science and Technology & Innovation,2021(24): 10-11, 16. (in Chinese) doi: 10.15913/j.cnki.kjycx.2021.24.003 [10] 张呈波,雷霆,李杰,等. 航空发动机燃烧室外机匣压力试验方法与系统[J]. 环境技术,2021,39(4): 212-216. doi: 10.3969/j.issn.1004-7204.2021.04.045ZHANG Chengbo,LEI Ting,LI Jie,et al. Pressure test method and system of aero-engine combustor outer casing[J]. Environmental Technology,2021,39(4): 212-216. (in Chinese) doi: 10.3969/j.issn.1004-7204.2021.04.045 [11] 周焕阳,张根,姚明格,等. 多轴载荷下发动机中介机匣强度试验方法研究[J]. 环境技术,2022,40(2): 192-197. doi: 10.3969/j.issn.1004-7204.2022.02.041ZHOU Huanyang,ZHANG Gen,YAO Mingge,et al. Research on strength test method under multiaxial load of engine intermediate casing[J]. Environmental Technology,2022,40(2): 192-197. (in Chinese) doi: 10.3969/j.issn.1004-7204.2022.02.041 [12] 朱杰. 复杂结构充压试验控制方法及其安全保护措施[J]. 工程与试验,2018,58(1): 86-89. doi: 10.3969/j.issn.1674-3407.2018.01.021ZHU Jie. Control method for pressurizing test of complex structure and safety measures[J]. Engineering & Test,2018,58(1): 86-89. (in Chinese) doi: 10.3969/j.issn.1674-3407.2018.01.021 [13] 赵凯, 刘鹏飞, 刘波浪, 等. 树脂基复合材料外涵道机匣的研制与应用[J]. 复合材料科学与工程, 2020(4): 112-116.ZHAO Kai, LIU Pengfei, LIU Bolang, et al. Development and application of bypass casing made of resin matrix composite aero-engine[J]. Composites Science and Engineering, 2020(4): 112-116. (in Chinese) [14] 王绍凯, 马绪强, 李敏, 等. 飞行器结构用复合材料四大核心技术及发展[J]. 玻璃钢/复合材料, 2014(9): 76-84.WANG Shaokai, MA Xuqiang, LI Min, et al. Four key technologies of structural composites for aircraft applications and its development[J]. Fiber Reinforced Plastics/Composites, 2014(9): 76-84. (in Chinese) [15] 映红, 赵智姝, 韩勐. 复合材料在飞机结构上的广泛应用[J]. 装备制造技术, 2011(4): 138-140.YING Hong, ZHAO Zhishu, HAN Meng. The wide application of composite material in the aircraft structure[J]. Equipment Manufacturing Technology, 2011(4): 138-140. (in Chinese) [16] 梁恒亮, 陈玉龙, 周洪飞. 耐温350 ℃以上复合材料外涵机匣模拟件的研制[J]. 复合材料科学与工程, 2022(2): 112-118, 128.LIANG Hengliang, CHEN Yulong, ZHOU Hongfei. Study on the composite simulator of the aero-engine bypass duct with resistance above 350 ℃[J]. Composites Science and Engineering, 2022(2): 112-118, 128. (in Chinese) [17] 杨峰,陈玉龙,罗旺,等. TG800碳纤维/聚酰亚胺树脂复合材料带翻边开口圆柱壳机匣件高温气动载荷下的承载性能[J]. 复合材料学报,2021,38(7): 2184-2195. doi: 10.13801/j.cnki.fhclxb.20210326.001YANG Feng,CHEN Yulong,LUO Wang,et al. Load-bearing capability of TG800 carbon fiber/polyimide resin composite cylindrical casing with flange and window under high-temperature aerodynamic load[J]. Acta Materiae Compositae Sinica,2021,38(7): 2184-2195. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20210326.001 [18] 王琦, 丛琳华, 王振亚, 等. 一种发动机机匣高温高压试验装置: CN201510909048.9[P]. 2018-04-13. [19] 郭建英, 秦同, 苏瀚生, 等. 机匣热压联合加载试验装置及其使用方法: CN201911234912.4[P]. 2021-07-20. [20] 杨峰,史剑,姚明格,等. 航空发动机复材外涵机匣静热强度试验方法研究[J]. 装备环境工程,2021,18(6): 30-35.YANG Feng,SHI Jian,YAO Mingge,et al. Research on static thermal strength test of composite bypass casing of aero-engine[J]. Equipment Environmental Engineering,2021,18(6): 30-35. (in Chinese) [21] 张佳斌. 结构热强度试验典型热-压耦合试验方法研究[J]. 工程与试验,2020,60(4): 31-33,63. doi: 10.3969/j.issn.1674-3407.2020.04.009ZHANG Jiabin. Study on typical heat-pressure coupling test method for structural thermal strength test[J]. Engineering & Test,2020,60(4): 31-33,63. (in Chinese) doi: 10.3969/j.issn.1674-3407.2020.04.009 [22] WOODWARD J L,MUDAN K S. Liquid and gas discharge rates through holes in process vessels[J]. Journal of Loss Prevention in the Process Industries,1991,4(3): 161-165. doi: 10.1016/0950-4230(91)80031-O [23] MONTIEL H,VILCHEZ J A,CASAL J. Mathematical modelling of accidental gas releases[J]. Journal of Hazardous Materials,1998,59: 211-233. [24] LENCLUD J,VENART J. Single and two-phase discharge from a pressurized vessel[J]. Revue Générale de Thermique,1996,35: 503-516. [25] DONG Y H,GAO H L,ZHOU J E,et al. Evaluation of gas release rate through holes in pipelines[J]. Journal of Loss Prevention in The Process Industries,2002,15: 423-428. [26] JAWAD J,SOARES R,VÉCHOT L,et al. Dynamics of gas flow between interconnected vessels: experiments and simulations[J]. Process Safety and Environmental Protection,2020,134: 381-391. [27] YUAN F,ZENG Y,KHOO B C. A new real-gas model to characterize and predict gas leakage for high-pressure gas pipeline[J]. Journal of Loss Prevention in the Process Industries,2022,74: 104650.1-104650.14. [28] TURNER T L, ASH R L. Numerical and experimental analyses of the radiant heat flux produced by quartz heating systems[R]. NASA TP-3387, 1994. [29] 陈皓,李嘉伟,史航,等. 涡轮机匣热辐射-对流耦合换热特性数值计算与实验测试[J]. 航空动力学报,2022,37(8): 1597-1606.CHEN Hao,LI Jiawei,SHI Hang,et al. Numerical calculation and experimental test of heat radiation-convection coupling heat transfer characteristics of turbine casing[J]. Journal of Aerospace Power,2022,37(8): 1597-1606. (in Chinese) [30] 曾祥虎,许瑛,张悦,等. 机匣法兰螺栓连接建模和密封性能分析[J]. 航空工程进展,2021,12(2): 143-149. doi: 10.16615/j.cnki.1674-8190.2021.02.17ZENG Xianghu,XU Ying,ZHANG Yue,et al. Modeling of casing flange bolt connection and analysis of sealing performance[J]. Advances in Aeronautical Science and Engineering,2021,12(2): 143-149. (in Chinese) doi: 10.16615/j.cnki.1674-8190.2021.02.17 [31] 艾延廷,李传喜,田晶,等. 基于环形板理论的机匣安装边密封特性分析方法研究[J]. 推进技术,2021,42(2): 431-439. doi: 10.13675/j.cnki.tjjs.190567AI Yanting,LI Chuanxi,TIAN Jin,et al. Research on sealing characteristic analysis method of casing installation edge based on annular plate theory[J]. Journal of Propulsion Technology,2021,42(2): 431-439. (in Chinese) doi: 10.13675/j.cnki.tjjs.190567 [32] 马奔奔,李源,王世建,等. 纵向无垫圈螺栓连接系统的密封性分析和轻量化设计[J]. 强度与环境,2019,46(4): 11-18. doi: 10.19447/j.cnki.11-1773/v.2019.04.002MA Benben,LI Yuan,WANG Shijian,et al. Lightweight optimal design and sealing analysis for longitudinal bolted joints without gaskets[J]. Structure & Environment Engineering,2019,46(4): 11-18. (in Chinese) doi: 10.19447/j.cnki.11-1773/v.2019.04.002