Model solving and size optimization of dryout threshold for vertical micropillar evaporators
-
摘要:
对现有干涸阈值模型进行优化,加入重力的影响,并与毛细作用力和渗透率的求解方法进行组合,得到了平均误差约为7%的表征垂直微柱蒸发器换热性能的最佳组合模型(Darcy_avg(
S )+SE)。利用该模型研究了微柱几何结构的影响,发现蒸发器最大换热能力在渗透率与毛细压力间平衡,几何尺寸接近最佳间距比(d /l ≈0.35)及高的微柱对应更高的散热能力,具有更小后退接触角的微柱群对应更高的干涸阈值。重力作用下干涸长度的增加导致干涸阈值的显著降低,遗传算法能有效地用于求解不同干涸长度下的最优尺寸。排列方式影响干涸阈值,最佳间距比下叉排布置的微柱阵列较顺排布置换热能力提升近13%。Abstract:The existing dryout threshold model was optimized by adding gravity and combining with capillary force and permeability solution methods, so as to obtain the best combined model (Darcy_avg(
S )+SE) for characterizing the heat transfer performance of a vertical micropillar evaporator with an average error of about 7%. The effect of micropillar geometry was investigated using this model. Model predictions indicated that the maximum heat transfer capacity of the evaporator was balanced between permeability and capillary pressure; those geometries close to the optimal pitch ratio (d /l ≈0.35) and higher micropillars correspond to greater heat dissipation capacity; and that micropillar arrays with smaller receding contact angles correspond to greater dryout thresholds. The increase of the dryout length under gravity led to a significant decrease of the dryout threshold, and the genetic algorithm can be effectively used to solve for the optimal size at different dryout lengths. The arrangement method affected the dryout threshold, the forked-row arrangement of the micropillar arrays increased the heat transfer capacity by nearly 13% compared with the smooth-row arrangement at optimal spacing ratio.-
Key words:
- micropillar arrays /
- evaporator /
- dryout threshold /
- optimization /
- thin-film evaporation
-
表 1 24 ℃水热物理参数表
Table 1. Table of thermophysical parameters of water at 24 ℃
参数 数值 σ/(N/m) 0.071 μ/10−3(Pa·s) 0.89 hfg/(kJ/kg) 2443.6 ρ/(kg/m3) 997 表 2 不同干涸长度下最优尺寸对应干涸阈值表
Table 2. Table of optimum sizes corresponding to dryout thresholds for different dryout lengths
d/μm l/μm h/μm Q/W(L=2 cm) Q/W(L=3 cm) Q/W(L=4 cm) 55 100 100 13.92 8.33 5.53 54 96 100 13.82 8.37 5.65 50 88 100 13.51 8.30 5.69 注:表中加粗数据含义为三组尺寸纵向比较,可看出各组优化尺寸均对应着相应干涸长度下最大的干涸阈值。 -
[1] MAHAJAN R,CHIU C P,CHRYSLER G. Cooling a microprocessor chip[J]. Proceedings of the IEEE,2006,94(8): 1476-1486. doi: 10.1109/JPROC.2006.879800 [2] MAJUMDAR A. Helping chips to keep their cool[J]. Nature Nanotechnology,2009,4: 214-215. doi: 10.1038/nnano.2009.65 [3] 刘萌,张超. 不同放电倍率下锂离子电池热效应分析研究[J]. 工业加热,2018,47(4): 1-3,11. LIU Meng,ZHANG Chao. Study on heating analysis of lithium battery for different discharge rates[J]. Industrial Heating,2018,47(4): 1-3,11. (in ChineseLIU Meng, ZHANG Chao. Study on heating analysis of lithium battery for different discharge rates[J]. Industrial Heating, 2018, 47(4): 1-3, 11. (in Chinese) [4] 李静静,陈萌. 锂动力电池电化学-热特性建模及仿真研究[J]. 森林工程,2020,36(6): 87-94. LI Jingjing,CHEN Meng. Modeling and simulation study of electrochemical and thermal characteristics of lithium power battery[J]. Forest Engineering,2020,36(6): 87-94. (in ChineseLI Jingjing, CHEN Meng. Modeling and simulation study of electrochemical and thermal characteristics of lithium power battery[J]. Forest Engineering, 2020, 36(6): 87-94. (in Chinese) [5] 苏存要,连文磊,郝鑫,等. 航空发动机附件综合热管理性能分析[J]. 航空动力学报,2022,37(9): 1896-1904. SU Cunyao,LIAN Wenlei,HAO Xin,et al. Analysis of integrated thermal management performance of aero-engine accessories[J]. Journal of Aerospace Power,2022,37(9): 1896-1904. (in ChineseSU Cunyao, LIAN Wenlei, HAO Xin, et al. Analysis of integrated thermal management performance of aero-engine accessories[J]. Journal of Aerospace Power, 2022, 37(9): 1896-1904. (in Chinese) [6] BERTIN J J,CUMMINGS R M. Fifty years of hypersonics: where we’ve been,where we’re going[J]. Progress in Aerospace Sciences,2003,39(6/7): 511-536. [7] 刘建,王清平 . 空天组合动力对先进结构热防护技术的需求分析[C]// 中国航天第三专业信息网第39届技术交流会暨第3届空天动力联合会议论文集. 河南 洛阳: 中国航天科工集团有限公司,2018: 11. LIU jian,WANG qingping. Analysis of the demand for advanced structural thermal protection technology from aerospace combined power[C]// Proceedings of the 39th Technical Exchange Conference of China Aerospace Third Professional Information Network and the 3rd Aerospace Power Joint Conference. Luoyang Henan: China Aerospace Science and Industry Corporation Limited (CASIC),2018: 11. (in ChineseLIU jian, WANG qingping. Analysis of the demand for advanced structural thermal protection technology from aerospace combined power[C]// Proceedings of the 39th Technical Exchange Conference of China Aerospace Third Professional Information Network and the 3rd Aerospace Power Joint Conference. Luoyang Henan: China Aerospace Science and Industry Corporation Limited (CASIC), 2018: 11. (in Chinese) [8] WEIBEL J A,GARIMELLA S V. Recent advances in vapor chamber transport characterization for high-heat-flux applications[J]. Advances in Heat Transfer,2013,45: 209-301. [9] YUAN Zihao,VAARTSTRA G,SHUKLA P,et al. Two-phase vapor chambers with micropillar evaporators: a new approach to remove heat from future high-performance chips[C]//Proceedings of 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Piscataway,US: IEEE,2019: 456-464. [10] ROJO G,DARABI J. Copper-carbon nanotube micropillars for passive thermal management of high heat flux electronic devices: ASME Paper HT2020-8998 [R]. New York: American Society of Mechanical Engineers,2020. [11] KARIYA H A,PETERS T B,CLEARY M,et al. Development and characterization of an air-cooled loop heat pipe with a wick in the condenser[J]. Journal of Thermal Science and Engineering Applications,2014,6(1): 011010. doi: 10.1115/1.4025049 [12] WEIBEL J A,GARIMELLA S V,NORTH M T. Characterization of evaporation and boiling from sintered powder wicks fed by capillary action[J]. International Journal of Heat and Mass Transfer,2010,53(19/20): 4204-4215. [13] NAM Y,SHARRATT S,BYON C,et al. Fabrication and characterization of the capillary performance of superhydrophilic Cu micropost arrays[J]. Journal of Microelectromechanical Systems,2010,19(3): 581-588. doi: 10.1109/JMEMS.2010.2043922 [14] WILKE K L,BARABADI B,ZHANG Tiejun,et al. Controlled wetting in nanoporous membranes for thin film evaporation[J]. Journal of Heat Transfer,2016,138(8): 080906. doi: 10.1115/1.4033827 [15] ADERA S,ANTAO D,RAJ R,et al. Design of micropillar wicks for thin-film evaporation[J]. International Journal of Heat and Mass Transfer,2016,101: 280-294. doi: 10.1016/j.ijheatmasstransfer.2016.04.107 [16] ZHU Yangying,ANTAO D S,LU Zhengmao,et al. Prediction and characterization of dry-out heat flux in micropillar wick structures[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2016,32(7): 1920-1927. doi: 10.1021/acs.langmuir.5b04502 [17] ANTAO D S,ADERA S,ZHU Yangying,et al. Dynamic evolution of the evaporating liquid-vapor interface in micropillar arrays[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2016,32(2): 519-526. doi: 10.1021/acs.langmuir.5b03916 [18] PETERSON G. An introduction to heat pipes: modeling,testing,and applications[M]. New York: Wiley,1994. [19] RAVI S,HORNER D,MOGHADDAM S. Monoporous micropillar wick structures,I-Mass transport characteristics[J]. Applied Thermal Engineering,2014,73(1): 1371-1377. doi: 10.1016/j.applthermaleng.2014.04.057 [20] HORNER D,RAVI S,MOGHADDAM S. Monoporous micropillar wick structures,Ⅱ-optimization & theoretical limits[J]. Applied Thermal Engineering,2014,73(1): 1378-1386. doi: 10.1016/j.applthermaleng.2014.04.055 [21] SOMASUNDARAM S,ZHU Yangying,LU Zhengmao,et al. Thermal design optimization of evaporator micropillar wicks[J]. International Journal of Thermal Sciences,2018,134: 179-187. doi: 10.1016/j.ijthermalsci.2018.07.036 [22] WEI Mengyao,HE Bin,LIANG Qian,et al. Optimization and thermal characterization of uniform silicon micropillar based evaporators[J]. International Journal of Heat and Mass Transfer,2018,127: 51-60. doi: 10.1016/j.ijheatmasstransfer.2018.06.128 [23] LIANG Qian,RAJ R,ADERA S,et al. Experiment and modeling of microstructured capillary wicks for thermal management of electronics[C]//Proceedings of IEEE 15th Electronics Packaging Technology Conference. Piscataway,US: IEEE,2013: 592-597. [24] ALHOSANI M H,ZHANG Tiejun. Dynamics of microscale liquid propagation in micropillar arrays[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2017,33(26): 6620-6629. doi: 10.1021/acs.langmuir.7b01090 [25] XIAO Rong,ENRIGHT R,WANG E N. Prediction and optimization of liquid propagation in micropillar arrays[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2010,26(19): 15070-15075. doi: 10.1021/la102645u [26] XIAO Rong,WANG E N. Microscale liquid dynamics and the effect on macroscale propagation in pillar arrays[J]. Langmuir: the ACS Journal of Surfaces and Colloids,2011,27(17): 10360-10364. doi: 10.1021/la202206p [27] TANNER L H. The spreading of silicone oil drops on horizontal surfaces[J]. Journal of Physics D Applied Physics,1979,12(9): 1473-1484. doi: 10.1088/0022-3727/12/9/009 [28] BYON C,KIM S J. The effect of meniscus on the permeability of micro-post arrays[J]. Journal of Micromechanics and Microengineering,2011,21(11): 115011. doi: 10.1088/0960-1317/21/11/115011 [29] BYERS A,DARABI J. Capillary flow characteristics of a novel micropillar array for applications in capillary-driven two-phase cooling systems[C]// Proceedings of 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Piscataway,US: IEEE,2016: 37-42. [30] RANJAN R,PATEL A,GARIMELLA S V,et al. Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders[J]. International Journal of Heat and Mass Transfer,2012,55(4): 586-596. doi: 10.1016/j.ijheatmasstransfer.2011.10.053 [31] RYU S,LEE W,NAM Y. Heat transfer and capillary performance of dual-height superhydrophilic micropost wicks[J]. International Journal of Heat and Mass Transfer,2014,73: 438-444. doi: 10.1016/j.ijheatmasstransfer.2014.02.020 -