留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

截面渐变稳态射流燃烧室燃烧与排放数值模拟

祁治伟 王骥飞 刘秋洪

祁治伟, 王骥飞, 刘秋洪. 截面渐变稳态射流燃烧室燃烧与排放数值模拟[J]. 航空动力学报, 2024, 39(9):20220725 doi: 10.13224/j.cnki.jasp.20220725
引用本文: 祁治伟, 王骥飞, 刘秋洪. 截面渐变稳态射流燃烧室燃烧与排放数值模拟[J]. 航空动力学报, 2024, 39(9):20220725 doi: 10.13224/j.cnki.jasp.20220725
QI Zhiwei, WANG Jifei, LIU Qiuhong. Combustion and emission numerical simulation of shape morphing jet-stabilized combustor[J]. Journal of Aerospace Power, 2024, 39(9):20220725 doi: 10.13224/j.cnki.jasp.20220725
Citation: QI Zhiwei, WANG Jifei, LIU Qiuhong. Combustion and emission numerical simulation of shape morphing jet-stabilized combustor[J]. Journal of Aerospace Power, 2024, 39(9):20220725 doi: 10.13224/j.cnki.jasp.20220725

截面渐变稳态射流燃烧室燃烧与排放数值模拟

doi: 10.13224/j.cnki.jasp.20220725
详细信息
    作者简介:

    祁治伟(2000-),男,硕士生,主要从事空气动力学研究。E-mail:qizhiwei@mail.nwpu.edu.cn

    通讯作者:

    王骥飞(1990-),男,副教授,博士,主要从事流动数值模拟和新能源开发与利用技术研究。E-mail:jifeiwang@imut.edu.cn

  • 中图分类号: V231.2

Combustion and emission numerical simulation of shape morphing jet-stabilized combustor

  • 摘要:

    针对近年来对燃气轮机低污染排放的要求,为了利用某椭圆形燃烧室低排放的优势,改善其出口不易匹配后方燃气涡轮的不足,提出了一种截面渐变概念,使稳态射流燃烧室入口为椭圆形截面,出口为圆形截面。使用数值模拟方法对其燃烧特性和出口处的流动与排放特性进行了研究,探究了截面渐变技术对燃烧室排放特性和流动特性的影响。与圆形燃烧室对比,截面渐变稳态射流燃烧室NO排放量降低了51.26%,保持了椭圆形燃烧室低排放的优势;与椭圆形燃烧室对比,有2.85%的NO排放量增加,但出口温度的均匀性提高了4.27%,同时能为后方燃气涡轮中的叶片提供更匹配的温度分布,证明了该截面渐变概念的可行性,可以为后续更多截面渐变技术研究作参考。

     

  • 图 1  5种渐变函数燃烧室的截面面积变化率随轴向距离变化的曲线

    Figure 1.  Change rate of sectional area five blending functions combustors profiles at various axial locations

    图 2  正切混合函数绘制线

    Figure 2.  Blending function of tan profile

    图 3  截面渐变稳态射流燃烧室示意图(单位:mm)

    Figure 3.  Schematic diagram of the shape morphing jet-stabilized model combustor (unit:mm)

    图 4  燃烧室六面体结构化网格

    Figure 4.  Structured hexahedral meshes of the combustor

    图 5  截面渐变燃烧室的网格独立结果

    Figure 5.  Grid independency solutions of the shape morphing combustor

    图 6  温度随径向距离分布曲线

    Figure 6.  Temperature profiles at various radial locations

    图 7  O2和CO2随径向距离分布曲线

    Figure 7.  O2 and CO2 mole fraction profiles at various radial locations

    图 8  NO摩尔分数随径向距离分布曲线

    Figure 8.  NO mole fraction profiles at various radial locations

    图 9  3种燃烧室的温度分布云图和流线分布(y=0 mm,z=0~150 mm)

    Figure 9.  Temperature contours for three combustors and streamline distribution (y=0 mm,z=0~150 mm)

    图 10  z=60 mm横截面湍流动能与流线分布

    Figure 10.  Turbulent kinetic energy and streamline distributions of z=60 mm

    图 11  温度随轴向距离的分布曲线

    Figure 11.  Temperature profiles at various axial locations

    图 12  FTDF随轴向距离的分布曲线

    Figure 12.  FTDF profiles at various axial locations

    图 13  3种燃烧室的FOTDF

    Figure 13.  FOTDF under three combustors

    图 14  两种燃烧室出口处温度随径向分布曲线

    Figure 14.  Temperature profiles for two combustors at various radial locations in outlet

    图 15  平均NO生成速率随轴向距离的分布曲线

    Figure 15.  Mean rates of NO profiles at various axial locations

    图 16  截面渐变燃烧室的NO分布云图(y=0 mm,z=0~150 mm)

    Figure 16.  NO mole fraction contours for shape morphing combustor (y=0 mm,z=0—150 mm)

    图 17  NO摩尔分数随轴向距离的分布曲线

    Figure 17.  NO mole fraction profiles at various axial locations

    图 18  3种燃烧室的NO排放量

    Figure 18.  NO emission of three combustors

    表  1  入口条件与流动特性

    Table  1.   Inlet conditions and fluid properties

    入口条件 质量流量/
    10−4 (kg/s)
    湍流强度/
    (m2/s2
    湍流耗散率/
    (m2/s3
    燃料 2.78
    雾化空气 2.399 39 17200
    长轴射流 23.72 6 850
    短轴射流 43.26 6 850
    下载: 导出CSV
  • [1] 何敏,刘云鹏,颜应文. 地面燃气轮机单管燃烧室流量分配试验[J]. 航空动力学报,2018,33(4): 919-927. HE Min,LIU Yunpeng,YAN Yingwen. Experiment on mass flow distribution of ground gas turbine single tube combustor[J]. Journal of Aerospace Power,2018,33(4): 919-927. (in Chinese

    HE Min, LIU Yunpeng, YAN Yingwen. Experiment on mass flow distribution of ground gas turbine single tube combustor[J]. Journal of Aerospace Power, 2018, 33(4): 919-927. (in Chinese)
    [2] 郭志辉,王帅,李磊,等. 贫燃预混旋流火焰燃烧不稳定性的实验[J]. 航空动力学报,2009,24(12): 2637-2642. GUO Zhihui,WANG Shuai,LI Lei,et al. Experimental study on combustion instability of lean premixed swirl flame[J]. Journal of Aerospace Power,2009,24(12): 2637-2642. (in Chinese

    GUO Zhihui, WANG Shuai, LI Lei, et al. Experimental study on combustion instability of lean premixed swirl flame[J]. Journal of Aerospace Power, 2009, 24(12): 2637-2642. (in Chinese)
    [3] 石翠翠,刘媛华. 基于组合模型的燃气轮机NOx排放影响因素研究[J]. 计算机系统应用,2022,31(6): 354-360. SHI Cuicui,LIU Yuanhua. Research on influencing factors of NOx emission from gas turbine based on combined model[J]. Computer Systems and Applications,2022,31(6): 354-360. (in Chinese

    SHI Cuicui, LIU Yuanhua. Research on influencing factors of NOx emission from gas turbine based on combined model[J]. Computer Systems and Applications, 2022, 31(6): 354-360. (in Chinese)
    [4] 谢法,张珊珊,蒋洪德. 入口流动参数脉动对燃气轮机燃烧室燃烧不稳定的影响[J]. 航空动力学报,2015,30(7): 1561-1565. XIE Fa,ZHANG Shanshan,JIANG Hongde. Effects of inlet flow parameters oscillation on combustion instability of gas turbine combustor[J]. Journal of Aerospace Power,2015,30(7): 1561-1565. (in Chinese

    XIE Fa, ZHANG Shanshan, JIANG Hongde. Effects of inlet flow parameters oscillation on combustion instability of gas turbine combustor[J]. Journal of Aerospace Power, 2015, 30(7): 1561-1565. (in Chinese)
    [5] BAUER H J,EIGENMANN L,SCHERRER B,et al. Local measurements in a three dimensional jet-stabilized model combustor[R]. Houston,US: International Gas Turbine and Aeroengine Congress and Exposition,1995.
    [6] 任冠龙,孙海俊,田乐,等. 不同构型射流稳焰燃烧室的冷态数值研究[J]. 弹箭与制导学报,2022,42(2): 1-6,15. REN Guanlong,SUN Haijun,TIAN Le,et al. Numerical study on the flow characteristics of jet-stabilized combustor with different configurations[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2022,42(2): 1-6,15. (in Chinese

    REN Guanlong, SUN Haijun, TIAN Le, et al. Numerical study on the flow characteristics of jet-stabilized combustor with different configurations[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(2): 1-6, 15. (in Chinese)
    [7] ALEMI E,ZARGARABADI M R. Effects of jet characteristics on NO formation in a jet-stabilized combustor[J]. International Journal of Thermal Sciences,2017,112: 55-67. doi: 10.1016/j.ijthermalsci.2016.10.001
    [8] SUN Haijun,YAN Pinghua,XU Yihua. Numerical simulation on hydrogen combustion and flow characteristics of a jet-stabilized combustor[J]. International Journal of Hydrogen Energy,2020,45(22): 12604-12615. doi: 10.1016/j.ijhydene.2020.02.151
    [9] YANG Xiao,HE Zhihong,QIU Penghua,et al. Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor[J]. Energy,2019,170: 1082-1097. doi: 10.1016/j.energy.2018.12.189
    [10] BAETS J,ZEHNDER M,沈一林. 可变涡轮几何形状的涡轮增压器[J]. 国外内燃机车,1998(10): 17-18. BAETS J,ZEHNDER M,SHEN Yilin. Turbocharger with variable turbine geometry[J]. Foreign Diesel Locomotive,1998(10): 17-18. (in Chinese

    BAETS J, ZEHNDER M, SHEN Yilin. Turbocharger with variable turbine geometry[J]. Foreign Diesel Locomotive, 1998(10): 17-18. (in Chinese)
    [11] TAYLOR T,VANWIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths: AIAA2008-2635 [R]. Reston,US: AIAA,2008.
    [12] KURRECK M,WILLMANN M,WITTIG S. Prediction of the three-dimensional reacting two-phase flow within a jet-stabilized combustor[J]. Journal of Engineering for Gas Turbines and Power,1998,120(1): 77-83. doi: 10.1115/1.2818090
    [13] BATCHELOR G K. An Introduction to Fluid Dynamics[M]. Cambridge,UK: Cambridge University Press,1967.
    [14] SHIH T H,LION W W,SHABBIR A,et al. A new j-e eddy-viscosity model for high reynolds numerical turbulent flows-model development and validation[J]. Comput Fluids,1995,24: 227-38. doi: 10.1016/0045-7930(94)00032-T
    [15] CHUI E H,RAITHBY G D. Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method[J]. Numerical Heat Transfer: Part B Fundamentals,1993,23(3): 269-288. doi: 10.1080/10407799308914901
    [16] YANG Xiao,HE Zhihong,DONG Shikui,et al. Combustion characteristics of bluff-body turbulent swirling flames with coaxial air microjet[J]. Energy & Fuels,2017,31(12): 14306-14319.
    [17] MAGNUSSEN B F,HJERTAGER B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[J]. Symposium (International) on Combustion,1977,16(1): 719-729. doi: 10.1016/S0082-0784(77)80366-4
    [18] DE SOETE G G. Overall reaction rates of NO and N2 formation from fuel nitrogen[J]. Symposium (International) on Combustion,1975,15(1): 1093-1102. doi: 10.1016/S0082-0784(75)80374-2
    [19] MORSI S A,ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics,1972,55: 193-208. doi: 10.1017/S0022112072001806
    [20] SAZHIN S S. Advanced models of fuel droplet heating and evaporation[J]. Progress in Energy and Combustion Science,2006,32(2): 162-214. doi: 10.1016/j.pecs.2005.11.001
    [21] ROSIN P,RAMMLER E. The laws governing the fineness of powdered coal[J]. Journal of the Institute of Fuel,1933,7(31): 29-36.
    [22] MUGELE R A,EVANS H D. Droplet size distribution in sprays[J]. Industrial & Engineering Chemistry,1951,43(6): 1317-1324.
    [23] XING Chang,LIU Li,QIU Penghua,et al. Combustion performance of an adjustable fuel feeding combustor under off-design conditions for a micro-gas turbine[J]. Applied Energy,2017,208: 12-24. doi: 10.1016/j.apenergy.2017.10.060
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  43
  • HTML浏览量:  24
  • PDF量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 网络出版日期:  2024-03-14

目录

    /

    返回文章
    返回