Combustion and emission numerical simulation of shape morphing jet-stabilized combustor
-
摘要:
针对近年来对燃气轮机低污染排放的要求,为了利用某椭圆形燃烧室低排放的优势,改善其出口不易匹配后方燃气涡轮的不足,提出了一种截面渐变概念,使稳态射流燃烧室入口为椭圆形截面,出口为圆形截面。使用数值模拟方法对其燃烧特性和出口处的流动与排放特性进行了研究,探究了截面渐变技术对燃烧室排放特性和流动特性的影响。与圆形燃烧室对比,截面渐变稳态射流燃烧室NO排放量降低了51.26%,保持了椭圆形燃烧室低排放的优势;与椭圆形燃烧室对比,有2.85%的NO排放量增加,但出口温度的均匀性提高了4.27%,同时能为后方燃气涡轮中的叶片提供更匹配的温度分布,证明了该截面渐变概念的可行性,可以为后续更多截面渐变技术研究作参考。
Abstract:According to the requirements of low pollution emission of gas turbine in recent years, in order to take advantage of an elliptical combustor and improve poor matching between its outlet and the gas turbine, a concept of shape morphing was proposed, which made the inlet of the jet-stabilized combustor elliptical and the outlet circular. Using numerical simulation methods, the combustion characteristics and flow and emission characteristics at the outlet of the combustor were studied. The influence of shape morphing on the emission and flow characteristics of the combustor was investigated. Shape morphing combustor reduced NO emission by 51.26% compared with circular combustor, maintaining the advantage of low emissions from the elliptical combustor; compared with the elliptical combustor, 2.85% of NO emission was sacrificed, but the uniformity of outlet temperature was improved by 4.27%. At the same time, it can provide a more matched temperature distribution for the blades in the rear gas turbine, and prove the feasibility of the cross section gradual change concept, which can serve as a reference for further research on cross section gradual change technology.
-
表 1 入口条件与流动特性
Table 1. Inlet conditions and fluid properties
入口条件 质量流量/
10−4 (kg/s)湍流强度/
(m2/s2)湍流耗散率/
(m2/s3)燃料 2.78 雾化空气 2.399 39 17200 长轴射流 23.72 6 850 短轴射流 43.26 6 850 -
[1] 何敏,刘云鹏,颜应文. 地面燃气轮机单管燃烧室流量分配试验[J]. 航空动力学报,2018,33(4): 919-927. HE Min,LIU Yunpeng,YAN Yingwen. Experiment on mass flow distribution of ground gas turbine single tube combustor[J]. Journal of Aerospace Power,2018,33(4): 919-927. (in ChineseHE Min, LIU Yunpeng, YAN Yingwen. Experiment on mass flow distribution of ground gas turbine single tube combustor[J]. Journal of Aerospace Power, 2018, 33(4): 919-927. (in Chinese) [2] 郭志辉,王帅,李磊,等. 贫燃预混旋流火焰燃烧不稳定性的实验[J]. 航空动力学报,2009,24(12): 2637-2642. GUO Zhihui,WANG Shuai,LI Lei,et al. Experimental study on combustion instability of lean premixed swirl flame[J]. Journal of Aerospace Power,2009,24(12): 2637-2642. (in ChineseGUO Zhihui, WANG Shuai, LI Lei, et al. Experimental study on combustion instability of lean premixed swirl flame[J]. Journal of Aerospace Power, 2009, 24(12): 2637-2642. (in Chinese) [3] 石翠翠,刘媛华. 基于组合模型的燃气轮机NOx排放影响因素研究[J]. 计算机系统应用,2022,31(6): 354-360. SHI Cuicui,LIU Yuanhua. Research on influencing factors of NOx emission from gas turbine based on combined model[J]. Computer Systems and Applications,2022,31(6): 354-360. (in ChineseSHI Cuicui, LIU Yuanhua. Research on influencing factors of NOx emission from gas turbine based on combined model[J]. Computer Systems and Applications, 2022, 31(6): 354-360. (in Chinese) [4] 谢法,张珊珊,蒋洪德. 入口流动参数脉动对燃气轮机燃烧室燃烧不稳定的影响[J]. 航空动力学报,2015,30(7): 1561-1565. XIE Fa,ZHANG Shanshan,JIANG Hongde. Effects of inlet flow parameters oscillation on combustion instability of gas turbine combustor[J]. Journal of Aerospace Power,2015,30(7): 1561-1565. (in ChineseXIE Fa, ZHANG Shanshan, JIANG Hongde. Effects of inlet flow parameters oscillation on combustion instability of gas turbine combustor[J]. Journal of Aerospace Power, 2015, 30(7): 1561-1565. (in Chinese) [5] BAUER H J,EIGENMANN L,SCHERRER B,et al. Local measurements in a three dimensional jet-stabilized model combustor[R]. Houston,US: International Gas Turbine and Aeroengine Congress and Exposition,1995. [6] 任冠龙,孙海俊,田乐,等. 不同构型射流稳焰燃烧室的冷态数值研究[J]. 弹箭与制导学报,2022,42(2): 1-6,15. REN Guanlong,SUN Haijun,TIAN Le,et al. Numerical study on the flow characteristics of jet-stabilized combustor with different configurations[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2022,42(2): 1-6,15. (in ChineseREN Guanlong, SUN Haijun, TIAN Le, et al. Numerical study on the flow characteristics of jet-stabilized combustor with different configurations[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(2): 1-6, 15. (in Chinese) [7] ALEMI E,ZARGARABADI M R. Effects of jet characteristics on NO formation in a jet-stabilized combustor[J]. International Journal of Thermal Sciences,2017,112: 55-67. doi: 10.1016/j.ijthermalsci.2016.10.001 [8] SUN Haijun,YAN Pinghua,XU Yihua. Numerical simulation on hydrogen combustion and flow characteristics of a jet-stabilized combustor[J]. International Journal of Hydrogen Energy,2020,45(22): 12604-12615. doi: 10.1016/j.ijhydene.2020.02.151 [9] YANG Xiao,HE Zhihong,QIU Penghua,et al. Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor[J]. Energy,2019,170: 1082-1097. doi: 10.1016/j.energy.2018.12.189 [10] BAETS J,ZEHNDER M,沈一林. 可变涡轮几何形状的涡轮增压器[J]. 国外内燃机车,1998(10): 17-18. BAETS J,ZEHNDER M,SHEN Yilin. Turbocharger with variable turbine geometry[J]. Foreign Diesel Locomotive,1998(10): 17-18. (in ChineseBAETS J, ZEHNDER M, SHEN Yilin. Turbocharger with variable turbine geometry[J]. Foreign Diesel Locomotive, 1998(10): 17-18. (in Chinese) [11] TAYLOR T,VANWIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths: AIAA2008-2635 [R]. Reston,US: AIAA,2008. [12] KURRECK M,WILLMANN M,WITTIG S. Prediction of the three-dimensional reacting two-phase flow within a jet-stabilized combustor[J]. Journal of Engineering for Gas Turbines and Power,1998,120(1): 77-83. doi: 10.1115/1.2818090 [13] BATCHELOR G K. An Introduction to Fluid Dynamics[M]. Cambridge,UK: Cambridge University Press,1967. [14] SHIH T H,LION W W,SHABBIR A,et al. A new j-e eddy-viscosity model for high reynolds numerical turbulent flows-model development and validation[J]. Comput Fluids,1995,24: 227-38. doi: 10.1016/0045-7930(94)00032-T [15] CHUI E H,RAITHBY G D. Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method[J]. Numerical Heat Transfer: Part B Fundamentals,1993,23(3): 269-288. doi: 10.1080/10407799308914901 [16] YANG Xiao,HE Zhihong,DONG Shikui,et al. Combustion characteristics of bluff-body turbulent swirling flames with coaxial air microjet[J]. Energy & Fuels,2017,31(12): 14306-14319. [17] MAGNUSSEN B F,HJERTAGER B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion[J]. Symposium (International) on Combustion,1977,16(1): 719-729. doi: 10.1016/S0082-0784(77)80366-4 [18] DE SOETE G G. Overall reaction rates of NO and N2 formation from fuel nitrogen[J]. Symposium (International) on Combustion,1975,15(1): 1093-1102. doi: 10.1016/S0082-0784(75)80374-2 [19] MORSI S A,ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics,1972,55: 193-208. doi: 10.1017/S0022112072001806 [20] SAZHIN S S. Advanced models of fuel droplet heating and evaporation[J]. Progress in Energy and Combustion Science,2006,32(2): 162-214. doi: 10.1016/j.pecs.2005.11.001 [21] ROSIN P,RAMMLER E. The laws governing the fineness of powdered coal[J]. Journal of the Institute of Fuel,1933,7(31): 29-36. [22] MUGELE R A,EVANS H D. Droplet size distribution in sprays[J]. Industrial & Engineering Chemistry,1951,43(6): 1317-1324. [23] XING Chang,LIU Li,QIU Penghua,et al. Combustion performance of an adjustable fuel feeding combustor under off-design conditions for a micro-gas turbine[J]. Applied Energy,2017,208: 12-24. doi: 10.1016/j.apenergy.2017.10.060