Analysis of the influence of manufacturing error on the modal characteristics of disc-drum combined rotor
-
摘要:
为了探究制造误差对转子模态特性的影响规律,基于转子动力学和摄动理论对转子模态局部化、振型阶跃和频率转向特性发生机理进行了阐述;从转子装配工程实际出发,采用自定义函数对典型配合面制造误差形式进行表征,并生成点云数据;采用皮肤模型法将制造误差引入到转子有限元模型中,并针对该模型开展了制造误差对其频率转向、振型阶跃以及模态振型局部化特性分析;采用振型位移局部化因子对制造误差引起的转子振动模态局部化程度进行了量化分析。结果表明:当考虑制造误差且达到一定程度时,会诱发转子失谐,导致转子系统刚度发生变化,加剧频率转向特性;同时通过模态置信准则图分析可知,模态振型发生了错位阶跃和顺序阶跃现象;制造误差导致的失谐效应会使振动能量在转子的部分区域进行聚集,使某些在理想模型下落在频率通带的频率在失谐后落到了频率禁带内,出现了模态振型局部化现象;进一步对其量化分析表明,采用振型位移局部化因子能够有效表征振动模态局部化程度。论文研究方法和结果可为复杂转子装配技术提供参考。
Abstract:In order to explore the influence of manufacturing errors on rotor modal characteristics, the mechanisms of rotor modal localization, mode step, and frequency steering characteristics were described based on rotor dynamics and perturbation theory. According to actual rotor assembly engineering, the manufacturing error forms of typical mating surfaces were characterized by user-defined functions, and point cloud data were generated. The skin model method was used for the first time to introduce manufacturing errors into the rotor finite element model, and the characteristics of manufacturing errors on its frequency steering, mode step, and mode localization were analyzed for this model. The mode displacement localization factor was used to quantify the degree of rotor vibration mode localization caused by manufacturing errors. The results showed that when the manufacturing error was considered to a certain extent, it could induce the rotor detuning, leading to the change of the rotor system stiffness and aggravating the frequency steering characteristics; at the same time, through analysis of the mode confidence criterion diagram, it can be seen that the mode shape had the phenomenon of dislocation step and sequence step; the detuning effect caused by manufacturing error could make the vibration energy gather in some areas of the rotor, so some frequencies falling in the frequency pass band of the ideal model may fall into the frequency band gap after detuning, and the phenomenon of mode shape localization occurred; further quantitative analysis showed that the mode displacement localization factor can effectively characterize the degree of vibration mode localization. The research methods and results can provide a reference for complex rotor assembly technology.
-
表 1 理想模型与制造误差模型前20阶固有频率对比
Table 1. Comparison of first twenty order natural frequencies of ideal model and manufacturing error models
Hz 模态阶次 理想模型 单高误差模型 双高误差模型 止口正弦误差模型 止口偏斜误差模型 1 42.11 41.95 41.93 42.00 41.98 2 42.13 41.97 41.95 42.12 42.18 3 98.15 98.33 98.30 98.04 98.31 4 98.16 98.34 98.31 98.10 98.40 5 399.18 251.39 251.52 346.94 266.77 6 410.88 255.18 255.85 436.50 337.41 7 453.21 434.43 434.97 452.95 448.15 8 606.46 583.52 583.46 595.29 585.86 9 610.13 583.70 583.95 618.38 594.38 10 666.36 602.28 603.52 661.49 627.53 11 778.16 653.44 655.55 777.21 747.37 12 806.83 785.52 785.47 798.58 789.83 13 809.49 785.72 786.13 814.05 796.85 14 898.89 837.31 835.52 896.68 891.36 15 945.56 839.17 856.42 936.92 897.83 16 955.75 887.40 890.94 944.47 913.14 17 1085.50 918.24 951.78 1085.60 1046.50 18 1121.30 1084.20 1084.20 1120.00 1085.80 19 1143.50 1085.20 1085.80 1142.60 1129.40 20 1417.10 1122.60 1122.70 1450.30 1131.30 注:表中加粗数字表示转子的禁频值。 表 2 转子1阶,6阶和20阶振型云图对比
Table 2. Comparison of 1st, 6th and 20th order vibration mode nephograms of the rotor
模型 1阶 6阶 20阶 理想模型 单高误差
模型双高误差
模型止口正弦
误差模型止口偏斜
误差模型 -
[1] YAN Yangyang,ZHAI Jingyu,GAO Peixin,et al. A multi-scale finite element contact model for seal and assembly of twin ferrule pipeline fittings[J]. Tribology International,2018,125: 100-109. doi: 10.1016/j.triboint.2018.04.028 [2] MU Xiaokai,SUN Wei,LIU Chong,et al. Study on rough surfaces: a novel method for high-precision simulation and interface contact performances analysis[J]. Precision Engineering,2022,73: 11-22. doi: 10.1016/j.precisioneng.2021.08.017 [3] 侯博文. 真实接触表面形貌下螺栓连接结构的力学性能[D]. 辽宁 大连: 大连理工大学,2020. HOU Bowen. Mechanical properties of bolted connection structure under real contact surface morphology[D]. Dalian Liaoning: Dalian University of Technology,2020. (in ChineseHOU Bowen. Mechanical properties of bolted connection structure under real contact surface morphology[D]. Dalian Liaoning: Dalian University of Technology, 2020. (in Chinese) [4] SCHLEICH B,ANWER N,MATHIEU L,et al. Skin model shapes: a new paradigm shift for geometric variations modelling in mechanical engineering[J]. Computer-Aided Design,2014,50: 1-15. doi: 10.1016/j.cad.2014.01.001 [5] ZHAO G,LI J Y,ZHANG B,et al. An aero-engine assembly deviation analysis method based on skin model shapes,in Aerospace Mechatronics and Control Technology[M]. Singapore City,Singapore: Springer,2022. [6] LIU Jianhua,ZHANG Zhiqiang,DING Xiaoyu,et al. Integrating form errors and local surface deformations into tolerance analysis based on skin model shapes and a boundary element method[J]. Computer-Aided Design,2018,104: 45-59. doi: 10.1016/j.cad.2018.05.005 [7] 刘占辉. 网壳结构振动模态局部化与跃迁问题研究[D]. 哈尔滨: 哈尔滨工业大学,2015. LIU Zhanhui. Research on vibration mode localization and mode jumping of reticulated shells[D]. Harbin: Harbin Institute of Technology,2015. (in ChineseLIU Zhanhui. Research on vibration mode localization and mode jumping of reticulated shells[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese) [8] 任兴民,南国防,秦洁,等. 航空发动机叶片“频率转向” 特性研究[J]. 西北工业大学学报,2009,27(2): 269-273. REN Xingmin,NAN Guofang,QIN Jie,et al. Studying frequency veering characteristics of aircraft engine blade with beam function combination method[J]. Journal of Northwestern Polytechnical University,2009,27(2): 269-273. (in Chinese doi: 10.3969/j.issn.1000-2758.2009.02.025REN Xingmin, NAN Guofang, QIN Jie, et al. Studying frequency veering characteristics of aircraft engine blade with beam function combination method[J]. Journal of Northwestern Polytechnical University, 2009, 27(2): 269-273. (in Chinese) doi: 10.3969/j.issn.1000-2758.2009.02.025 [9] 王红建,贺尔铭,赵志彬. 频率转向特征对失谐叶盘模态局部化的作用[J]. 中国机械工程,2009,20(1): 82-85. WANG Hongjian,HE Erming,ZHAO Zhibin. Effects of frequency veering features on mode localization of mistuned bladed disks[J]. China Mechanical Engineering,2009,20(1): 82-85. (in Chinese doi: 10.3321/j.issn:1004-132X.2009.01.018WANG Hongjian, HE Erming, ZHAO Zhibin. Effects of frequency veering features on mode localization of mistuned bladed disks[J]. China Mechanical Engineering, 2009, 20(1): 82-85. (in Chinese) doi: 10.3321/j.issn:1004-132X.2009.01.018 [10] 李益萱,贺尔铭,王红建,等. 叶盘结构频率转向特征的量化分析研究[J]. 西北工业大学学报,2010,28(5): 764-768. LI Yixuan,HE Erming,WANG Hongjian,et al. Quantitative analysis of the frequency veering properties of a bladed disk[J]. Journal of Northwestern Polytechnical University,2010,28(5): 764-768. (in Chinese doi: 10.3969/j.issn.1000-2758.2010.05.024LI Yixuan, HE Erming, WANG Hongjian, et al. Quantitative analysis of the frequency veering properties of a bladed disk[J]. Journal of Northwestern Polytechnical University, 2010, 28(5): 764-768. (in Chinese) doi: 10.3969/j.issn.1000-2758.2010.05.024 [11] 白斌,白广忱,童晓晨,等. 整体叶盘结构失谐振动的国内外研究状况[J]. 航空动力学报,2014,29(1): 91-103. BAI Bin,BAI Guangchen,TONG Xiaochen,et al. Research on vibration problem of integral mistuned bladed disk assemblies at home and abroad[J]. Journal of Aerospace Power,2014,29(1): 91-103. (in ChineseBAI Bin, BAI Guangchen, TONG Xiaochen, et al. Research on vibration problem of integral mistuned bladed disk assemblies at home and abroad[J]. Journal of Aerospace Power, 2014, 29(1): 91-103. (in Chinese) [12] 牛宏伟,郭海东,文敏. 航空发动机压气机转子叶片频率转向特性研究[J]. 机械研究与应用,2019,32(3): 37-39. NIU Hongwei,GUO Haidong,WEN Min. Study on the frequency veering characteristics of an aero-engine compressor blade[J]. Mechanical Research & Application,2019,32(3): 37-39. (in ChineseNIU Hongwei, GUO Haidong, WEN Min. Study on the frequency veering characteristics of an aero-engine compressor blade[J]. Mechanical Research & Application, 2019, 32(3): 37-39. (in Chinese) [13] SUN Jia,LOPEZ ARTEAGA I,KARI L. General shell model for a rotating pretwisted blade[J]. Journal of Sound and Vibration,2013,332(22): 5804-5820. doi: 10.1016/j.jsv.2013.06.025 [14] 崔韦,王建军. 裂纹叶片频率转向和振型转换特性研究[J]. 推进技术,2015,36(4): 614-621. CUI Wei,WANG Jianjun. Frequency veering and mode shape interaction for a cracked blade[J]. Journal of Propulsion Technology,2015,36(4): 614-621. (in ChineseCUI Wei, WANG Jianjun. Frequency veering and mode shape interaction for a cracked blade[J]. Journal of Propulsion Technology, 2015, 36(4): 614-621. (in Chinese) [15] KLAUKE T,STREHLAU U,KÜHHORN A. Integer frequency veering of mistuned blade integrated disks[J]. Journal of Turbomachinery,2013,135(6): 061004. doi: 10.1115/1.4024022 [16] ANDERSON P W. Absence of diffusion in certain random lattices[J]. Physical Review,1958,109(5): 1492-1505. doi: 10.1103/PhysRev.109.1492 [17] HODGES C H. Confinement of vibration by structural irregularity[J]. Journal of Sound and Vibration,1982,82(3): 411-424. doi: 10.1016/S0022-460X(82)80022-9 [18] HODGES C H,WOODHOUSE J. Vibration isolation from irregularity in a nearly periodic structure[J]. The Journal of the Acoustical Society of America,1983,74(3): 411-424. [19] ZHANG Hongyuan,YUAN Huiqun,YANG Wenjun,et al. Research on vibration localization of mistuned bladed disk system[J]. Journal of Vibroengineering,2017,19(5): 3296-3312. doi: 10.21595/jve.2017.17822 [20] 郭鑫,李东升,姜涛. 风力机风轮模态局部化的动力学机理与影响因素分析[J]. 太阳能学报,2022,43(7): 264-269. GUO Xin,LI Dongsheng,JIANG Tao. Analysis of kinetic mechanism and influencing factor of mode localizayion in wind turbine rotor[J]. Acta Energiae Solaris Sinica,2022,43(7): 264-269. (in ChineseGUO Xin, LI Dongsheng, JIANG Tao. Analysis of kinetic mechanism and influencing factor of mode localizayion in wind turbine rotor[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 264-269. (in Chinese) [21] 张永朋,李东升,郭鑫. 近海风机叶片模态局部化产生机理及定量分析研究[J]. 计算力学学报,2020,37(1): 53-61. ZHANG Yongpeng,LI Dongsheng,GUO Xin. Research on the mechanism and quantitative analysis of mode localization of offshore wind turbine blades[J]. Chinese Journal of Computational Mechanics,2020,37(1): 53-61. (in Chinese doi: 10.7511/jslx20181220001ZHANG Yongpeng, LI Dongsheng, GUO Xin. Research on the mechanism and quantitative analysis of mode localization of offshore wind turbine blades[J]. Chinese Journal of Computational Mechanics, 2020, 37(1): 53-61. (in Chinese) doi: 10.7511/jslx20181220001 [22] 高阳,姚建尧,杨诚,等. 小失谐对整体叶盘结构动态特性的影响[J]. 航空动力学报,2018,33(7): 1566-1574. GAO Yang,YAO Jianyao,YANG Cheng,et al. Influences of small mistuning on dynamic characteristics of bladed disks[J]. Journal of Aerospace Power,2018,33(7): 1566-1574. (in ChineseGAO Yang, YAO Jianyao, YANG Cheng, et al. Influences of small mistuning on dynamic characteristics of bladed disks[J]. Journal of Aerospace Power, 2018, 33(7): 1566-1574. (in Chinese) [23] 王毅泽. 周期结构中弹性波的色散关系与振动局部化问题研究[D]. 哈尔滨: 哈尔滨工业大学,2006. WANG Yize. Study on dispersion relation of elastic wave and vibration localization in periodic structure[D]. Harbin: Harbin Institute of Technology,2006. (in ChineseWANG Yize. Study on dispersion relation of elastic wave and vibration localization in periodic structure[D]. Harbin: Harbin Institute of Technology, 2006. (in Chinese) [24] 赵问银,张家忠,周成武. 大型离心叶轮振动模态局部化特性研究[J]. 应用力学学报,2012,29(6): 699-704,775. ZHAO Wenyin,ZHANG Jiazhong,ZHOU Chengwu. Study on the vibration localization in the centrifugal Impeller with periodic structures[J]. Chinese Journal of Applied Mechanics,2012,29(6): 699-704,775. (in Chinese doi: 10.11776/cjam.29.06.C005ZHAO Wenyin, ZHANG Jiazhong, ZHOU Chengwu. Study on the vibration localization in the centrifugal Impeller with periodic structures[J]. Chinese Journal of Applied Mechanics, 2012, 29(6): 699-704, 775. (in Chinese) doi: 10.11776/cjam.29.06.C005 [25] 王建军,于长波,姚建尧,等. 失谐叶盘振动模态局部化定量描述方法[J]. 推进技术,2009,30(4): 457-461,473. WANG Jianjun,YU Changbo,YAO Jianyao,et al. Vibratory mode localization factors of mistuned bladed disk assemblies[J]. Journal of Propulsion Technology,2009,30(4): 457-461,473. (in Chinese doi: 10.3321/j.issn:1001-4055.2009.04.014WANG Jianjun, YU Changbo, YAO Jianyao, et al. Vibratory mode localization factors of mistuned bladed disk assemblies[J]. Journal of Propulsion Technology, 2009, 30(4): 457-461, 473. (in Chinese) doi: 10.3321/j.issn:1001-4055.2009.04.014 [26] SUN Hongyun,YUAN Huiqun. Mistuning parameter identification and vibration localization analysis of the integration rotor[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2022,236(2): 238-253. doi: 10.1177/0954410020981465 [27] 于长波,王建军,李其汉. 失谐叶盘结构的概率响应局部化特性[J]. 航空动力学报,2010,25(9): 2006-2012. YU Changbo,WANG Jianjun,LI Qihan. Probability characteristics for response localization of mistuned bladed disk assemblies[J]. Journal of Aerospace Power,2010,25(9): 2006-2012. (in ChineseYU Changbo, WANG Jianjun, LI Qihan. Probability characteristics for response localization of mistuned bladed disk assemblies[J]. Journal of Aerospace Power, 2010, 25(9): 2006-2012. (in Chinese) [28] 王奇,贾睿东,杨树华,等. 拉杆转子预紧力建模及其诱发振动局部化研究[J]. 航空动力学报,2023,38(12): 3020-3030. WANG Qi,JIA Ruidong,YANG Shuhua,et al. Modelling of pre-tightening force in rod-fastened rotors and it induced vibration localization[J]. Journal of Aerospace Power,2023,38(12): 3020-3030. (in ChineseWANG Qi, JIA Ruidong, YANG Shuhua, et al. Modelling of pre-tightening force in rod-fastened rotors and it induced vibration localization[J]. Journal of Aerospace Power, 2023, 38(12): 3020-3030. (in Chinese) [29] 钟一谔,何衍宗,王正,等. 转子动力学[M]. 北京: 清华大学出版社,1987. ZHONG Yi’e,HE Yanzong,WANG Zheng,et al. Rotordynamics[M]. Beijing: Tsinghua University Press,1987. (in ChineseZHONG Yi’e, HE Yanzong, WANG Zheng, et al. Rotordynamics[M]. Beijing: Tsinghua University Press, 1987. (in Chinese) [30] 张伟,陈爽,杜双言,等. 制造误差对航发转子同心度的影响[J]. 现代制造技术与装备,2021(8): 26-29. ZHANG Wei,CHEN Shuang,DU Shuangyan,et al. Influence of manufacturing error on concentricity of aeroengine rotor[J]. Modern Manufacturing Technology and Equipment,2021(8): 26-29. (in Chinese doi: 10.3969/j.issn.1673-5587.2021.08.012ZHANG Wei, CHEN Shuang, DU Shuangyan, et al. Influence of manufacturing error on concentricity of aeroengine rotor[J]. Modern Manufacturing Technology and Equipment, 2021(8): 26-29. (in Chinese) doi: 10.3969/j.issn.1673-5587.2021.08.012 [31] 刘洪慧. 航空发动机转子装配不平衡量预测与优化[D]. 辽宁 大连: 大连理工大学,2021. LIU Honghui. Prediction and optimization of imbalance in aero-engine rotor assembly[D]. Dalian Liaoning: Dalian University of Technology,2021. (in ChineseLIU Honghui. Prediction and optimization of imbalance in aero-engine rotor assembly[D]. Dalian Liaoning: Dalian University of Technology, 2021. (in Chinese) [32] 陈塑寰. 结构动态设计的矩阵摄动理论[M]. 北京: 科学出版社,1999. CHEN Shuhuan. Matrix perturbation theory for structural dynamic design[M]. Beijing: Science Press,1999. (in ChineseCHEN Shuhuan. Matrix perturbation theory for structural dynamic design[M]. Beijing: Science Press, 1999. (in Chinese)