留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

制造误差对盘鼓组合转子模态特性影响分析

邹存建 韩清凯 张昊 卢崇劭 翟敬宇

邹存建, 韩清凯, 张昊, 等. 制造误差对盘鼓组合转子模态特性影响分析[J]. 航空动力学报, 2024, 39(9):20220727 doi: 10.13224/j.cnki.jasp.20220727
引用本文: 邹存建, 韩清凯, 张昊, 等. 制造误差对盘鼓组合转子模态特性影响分析[J]. 航空动力学报, 2024, 39(9):20220727 doi: 10.13224/j.cnki.jasp.20220727
ZOU Cunjian, HAN Qingkai, ZHANG Hao, et al. Analysis of the influence of manufacturing error on the modal characteristics of disc-drum combined rotor[J]. Journal of Aerospace Power, 2024, 39(9):20220727 doi: 10.13224/j.cnki.jasp.20220727
Citation: ZOU Cunjian, HAN Qingkai, ZHANG Hao, et al. Analysis of the influence of manufacturing error on the modal characteristics of disc-drum combined rotor[J]. Journal of Aerospace Power, 2024, 39(9):20220727 doi: 10.13224/j.cnki.jasp.20220727

制造误差对盘鼓组合转子模态特性影响分析

doi: 10.13224/j.cnki.jasp.20220727
基金项目: 中国航空发动机集团产学研合作项目(HFZL2019CXY021-1)
详细信息
    作者简介:

    邹存建(1990-),男,博士生,主要从事转子动力学与振动方面的研究。E-mail:zcj727@mail.dlut.edu.cn

    通讯作者:

    翟敬宇(1984-),男,副教授,博士,主要从事航空发动机结构强度、刚度及振动方面的研究。E-mail:zhaijy@dlut.edu.cn

  • 中图分类号: V232.2

Analysis of the influence of manufacturing error on the modal characteristics of disc-drum combined rotor

  • 摘要:

    为了探究制造误差对转子模态特性的影响规律,基于转子动力学和摄动理论对转子模态局部化、振型阶跃和频率转向特性发生机理进行了阐述;从转子装配工程实际出发,采用自定义函数对典型配合面制造误差形式进行表征,并生成点云数据;采用皮肤模型法将制造误差引入到转子有限元模型中,并针对该模型开展了制造误差对其频率转向、振型阶跃以及模态振型局部化特性分析;采用振型位移局部化因子对制造误差引起的转子振动模态局部化程度进行了量化分析。结果表明:当考虑制造误差且达到一定程度时,会诱发转子失谐,导致转子系统刚度发生变化,加剧频率转向特性;同时通过模态置信准则图分析可知,模态振型发生了错位阶跃和顺序阶跃现象;制造误差导致的失谐效应会使振动能量在转子的部分区域进行聚集,使某些在理想模型下落在频率通带的频率在失谐后落到了频率禁带内,出现了模态振型局部化现象;进一步对其量化分析表明,采用振型位移局部化因子能够有效表征振动模态局部化程度。论文研究方法和结果可为复杂转子装配技术提供参考。

     

  • 图 1  盘鼓组合转子结构

    Figure 1.  Structure of disc-drum combined rotor

    图 2  支撑刚度修正

    Figure 2.  Support stiffness correction

    图 3  单高和双高跳动误差表征

    Figure 3.  Single-high and double-high runout error characterization

    图 4  止口跳动误差表征

    Figure 4.  Runout error characterization of lip

    图 5  引入制造误差的皮肤模型法

    Figure 5.  Skin model method with a manufacturing error

    图 6  不考虑制造误差的盘鼓组合转子有限元模型

    Figure 6.  Finite element model of disc-drum combined rotor without considering manufacturing error

    图 7  引入典型制造误差的配合面网格模型

    Figure 7.  Mesh models of the mating surface with typical manufacturing errors

    图 8  误差模型与理想模型前20阶振型向量夹角变化

    Figure 8.  Variation of the angles between the error models and the first 20 mode vectors of the ideal model

    图 9  盘鼓组合转子前4阶正反进动频率曲线

    Figure 9.  Front and back precession frequency curves for the first four orders of disc-drum combined rotor

    图 10  MAC图

    Figure 10.  MAC diagrams

    图 11  盘鼓组合转子前20阶振型局部化因子

    Figure 11.  Localization factor of the first 20th order vibration mode of disc-drum composite rotor

    表  1  理想模型与制造误差模型前20阶固有频率对比

    Table  1.   Comparison of first twenty order natural frequencies of ideal model and manufacturing error models Hz

    模态阶次理想模型单高误差模型双高误差模型止口正弦误差模型止口偏斜误差模型
    142.1141.9541.9342.0041.98
    242.1341.9741.9542.1242.18
    398.1598.3398.3098.0498.31
    498.1698.3498.3198.1098.40
    5399.18251.39251.52346.94266.77
    6410.88255.18255.85436.50337.41
    7453.21434.43434.97452.95448.15
    8606.46583.52583.46595.29585.86
    9610.13583.70583.95618.38594.38
    10666.36602.28603.52661.49627.53
    11778.16653.44655.55777.21747.37
    12806.83785.52785.47798.58789.83
    13809.49785.72786.13814.05796.85
    14898.89837.31835.52896.68891.36
    15945.56839.17856.42936.92897.83
    16955.75887.40890.94944.47913.14
    171085.50918.24951.781085.601046.50
    181121.301084.201084.201120.001085.80
    191143.501085.201085.801142.601129.40
    201417.101122.601122.701450.301131.30
    注:表中加粗数字表示转子的禁频值。
    下载: 导出CSV

    表  2  转子1阶、6阶和20阶振型云图对比

    Table  2.   Comparison of 1st、6th and 20th order vibration mode nephograms of the rotor

    模型 1阶 6阶 20阶
    理想模型
    单高误差
    模型
    双高误差
    模型
    止口正弦
    误差模型
    止口偏斜
    误差模型
    下载: 导出CSV
  • [1] YAN Yangyang,ZHAI Jingyu,GAO Peixin,et al. A multi-scale finite element contact model for seal and assembly of twin ferrule pipeline fittings[J]. Tribology International,2018,125: 100-109. doi: 10.1016/j.triboint.2018.04.028
    [2] MU Xiaokai,SUN Wei,LIU Chong,et al. Study on rough surfaces: a novel method for high-precision simulation and interface contact performances analysis[J]. Precision Engineering,2022,73: 11-22. doi: 10.1016/j.precisioneng.2021.08.017
    [3] 侯博文. 真实接触表面形貌下螺栓连接结构的力学性能[D]. 辽宁 大连: 大连理工大学,2020. HOU Bowen. Mechanical properties of bolted connection structure under real contact surface morphology[D]. Dalian Liaoning: Dalian University of Technology,2020. (in Chinese

    HOU Bowen. Mechanical properties of bolted connection structure under real contact surface morphology[D]. Dalian Liaoning: Dalian University of Technology, 2020. (in Chinese)
    [4] SCHLEICH B,ANWER N,MATHIEU L,et al. Skin model shapes: a new paradigm shift for geometric variations modelling in mechanical engineering[J]. Computer-Aided Design,2014,50: 1-15. doi: 10.1016/j.cad.2014.01.001
    [5] ZHAO G,LI J Y,ZHANG B,et al. An aero-engine assembly deviation analysis method based on skin model shapes,in Aerospace Mechatronics and Control Technology[M]. Singapore City,Singapore: Springer,2022.
    [6] LIU Jianhua,ZHANG Zhiqiang,DING Xiaoyu,et al. Integrating form errors and local surface deformations into tolerance analysis based on skin model shapes and a boundary element method[J]. Computer-Aided Design,2018,104: 45-59. doi: 10.1016/j.cad.2018.05.005
    [7] 刘占辉. 网壳结构振动模态局部化与跃迁问题研究[D]. 哈尔滨: 哈尔滨工业大学,2015. LIU Zhanhui. Research on vibration mode localization and mode jumping of reticulated shells[D]. Harbin: Harbin Institute of Technology,2015. (in Chinese

    LIU Zhanhui. Research on vibration mode localization and mode jumping of reticulated shells[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [8] 任兴民,南国防,秦洁,等. 航空发动机叶片“频率转向” 特性研究[J]. 西北工业大学学报,2009,27(2): 269-273. REN Xingmin,NAN Guofang,QIN Jie,et al. Studying frequency veering characteristics of aircraft engine blade with beam function combination method[J]. Journal of Northwestern Polytechnical University,2009,27(2): 269-273. (in Chinese doi: 10.3969/j.issn.1000-2758.2009.02.025

    REN Xingmin, NAN Guofang, QIN Jie, et al. Studying frequency veering characteristics of aircraft engine blade with beam function combination method[J]. Journal of Northwestern Polytechnical University, 2009, 27(2): 269-273. (in Chinese) doi: 10.3969/j.issn.1000-2758.2009.02.025
    [9] 王红建,贺尔铭,赵志彬. 频率转向特征对失谐叶盘模态局部化的作用[J]. 中国机械工程,2009,20(1): 82-85. WANG Hongjian,HE Erming,ZHAO Zhibin. Effects of frequency veering features on mode localization of mistuned bladed disks[J]. China Mechanical Engineering,2009,20(1): 82-85. (in Chinese doi: 10.3321/j.issn:1004-132X.2009.01.018

    WANG Hongjian, HE Erming, ZHAO Zhibin. Effects of frequency veering features on mode localization of mistuned bladed disks[J]. China Mechanical Engineering, 2009, 20(1): 82-85. (in Chinese) doi: 10.3321/j.issn:1004-132X.2009.01.018
    [10] 李益萱,贺尔铭,王红建,等. 叶盘结构频率转向特征的量化分析研究[J]. 西北工业大学学报,2010,28(5): 764-768. LI Yixuan,HE Erming,WANG Hongjian,et al. Quantitative analysis of the frequency veering properties of a bladed disk[J]. Journal of Northwestern Polytechnical University,2010,28(5): 764-768. (in Chinese doi: 10.3969/j.issn.1000-2758.2010.05.024

    LI Yixuan, HE Erming, WANG Hongjian, et al. Quantitative analysis of the frequency veering properties of a bladed disk[J]. Journal of Northwestern Polytechnical University, 2010, 28(5): 764-768. (in Chinese) doi: 10.3969/j.issn.1000-2758.2010.05.024
    [11] 白斌,白广忱,童晓晨,等. 整体叶盘结构失谐振动的国内外研究状况[J]. 航空动力学报,2014,29(1): 91-103. BAI Bin,BAI Guangchen,TONG Xiaochen,et al. Research on vibration problem of integral mistuned bladed disk assemblies at home and abroad[J]. Journal of Aerospace Power,2014,29(1): 91-103. (in Chinese

    BAI Bin, BAI Guangchen, TONG Xiaochen, et al. Research on vibration problem of integral mistuned bladed disk assemblies at home and abroad[J]. Journal of Aerospace Power, 2014, 29(1): 91-103. (in Chinese)
    [12] 牛宏伟,郭海东,文敏. 航空发动机压气机转子叶片频率转向特性研究[J]. 机械研究与应用,2019,32(3): 37-39. NIU Hongwei,GUO Haidong,WEN Min. Study on the frequency veering characteristics of an aero-engine compressor blade[J]. Mechanical Research & Application,2019,32(3): 37-39. (in Chinese

    NIU Hongwei, GUO Haidong, WEN Min. Study on the frequency veering characteristics of an aero-engine compressor blade[J]. Mechanical Research & Application, 2019, 32(3): 37-39. (in Chinese)
    [13] SUN Jia,LOPEZ ARTEAGA I,KARI L. General shell model for a rotating pretwisted blade[J]. Journal of Sound and Vibration,2013,332(22): 5804-5820. doi: 10.1016/j.jsv.2013.06.025
    [14] 崔韦,王建军. 裂纹叶片频率转向和振型转换特性研究[J]. 推进技术,2015,36(4): 614-621. CUI Wei,WANG Jianjun. Frequency Veering and Mode Shape Interaction for a Cracked Blade[J]. Journal of Propulsion Technology,2015,36(4): 614-621. (in Chinese

    CUI Wei, WANG Jianjun. Frequency Veering and Mode Shape Interaction for a Cracked Blade[J]. Journal of Propulsion Technology, 2015, 36(4): 614-621. (in Chinese)
    [15] KLAUKE T,STREHLAU U,KÜHHORN A. Integer frequency veering of mistuned blade integrated disks[J]. Journal of Turbomachinery,2013,135(6): 061004. doi: 10.1115/1.4024022
    [16] ANDERSON P W. Absence of diffusion in certain random lattices[J]. Physical Review,1958,109(5): 1492-1505. doi: 10.1103/PhysRev.109.1492
    [17] HODGES C H. Confinement of vibration by structural irregularity[J]. Journal of Sound and Vibration,1982,82(3): 411-424. doi: 10.1016/S0022-460X(82)80022-9
    [18] HODGES C H,WOODHOUSE J. Vibration isolation from irregularity in a nearly periodic structure[J]. The Journal of the Acoustical Society of America,1983,74(3): 411-424.
    [19] ZHANG Hongyuan,YUAN Huiqun,YANG Wenjun,et al. Research on vibration localization of mistuned bladed disk system[J]. Journal of Vibroengineering,2017,19(5): 3296-3312. doi: 10.21595/jve.2017.17822
    [20] 郭鑫,李东升,姜涛. 风力机风轮模态局部化的动力学机理与影响因素分析[J]. 太阳能学报,2022,43(7): 264-269. GUO Xin,LI Dongsheng,JIANG Tao. Analysis of kinetic mechanism and influencing factor of mode localizayion in wind turbine rotor[J]. Acta Energiae Solaris Sinica,2022,43(7): 264-269. (in Chinese

    GUO Xin, LI Dongsheng, JIANG Tao. Analysis of kinetic mechanism and influencing factor of mode localizayion in wind turbine rotor[J]. Acta Energiae Solaris Sinica, 2022, 43(7): 264-269. (in Chinese)
    [21] 张永朋,李东升,郭鑫. 近海风机叶片模态局部化产生机理及定量分析研究[J]. 计算力学学报,2020,37(1): 53-61. ZHANG Yongpeng,LI Dongsheng,GUO Xin. Research on the mechanism and quantitative analysis of mode localization of offshore wind turbine blades[J]. Chinese Journal of Computational Mechanics,2020,37(1): 53-61. (in Chinese doi: 10.7511/jslx20181220001

    ZHANG Yongpeng, LI Dongsheng, GUO Xin. Research on the mechanism and quantitative analysis of mode localization of offshore wind turbine blades[J]. Chinese Journal of Computational Mechanics, 2020, 37(1): 53-61. (in Chinese) doi: 10.7511/jslx20181220001
    [22] 高阳,姚建尧,杨诚,等. 小失谐对整体叶盘结构动态特性的影响[J]. 航空动力学报,2018,33(7): 1566-1574. GAO Yang,YAO Jianyao,YANG Cheng,et al. Influences of small mistuning on dynamic characteristics of bladed disks[J]. Journal of Aerospace Power,2018,33(7): 1566-1574. (in Chinese

    GAO Yang, YAO Jianyao, YANG Cheng, et al. Influences of small mistuning on dynamic characteristics of bladed disks[J]. Journal of Aerospace Power, 2018, 33(7): 1566-1574. (in Chinese)
    [23] 王毅泽. 周期结构中弹性波的色散关系与振动局部化问题研究[D]. 哈尔滨: 哈尔滨工业大学,2006. WANG Yize. Study on dispersion relation of elastic wave and vibration localization in periodic structure[D]. Harbin: Harbin Institute of Technology,2006. (in Chinese

    WANG Yize. Study on dispersion relation of elastic wave and vibration localization in periodic structure[D]. Harbin: Harbin Institute of Technology, 2006. (in Chinese)
    [24] 赵问银,张家忠,周成武. 大型离心叶轮振动模态局部化特性研究[J]. 应用力学学报,2012,29(6): 699-704,775. ZHAO Wenyin,ZHANG Jiazhong,ZHOU Chengwu. Study on the vibration localization in the centrifugal Impeller with periodic structures[J]. Chinese Journal of Applied Mechanics,2012,29(6): 699-704,775. (in Chinese doi: 10.11776/cjam.29.06.C005

    ZHAO Wenyin, ZHANG Jiazhong, ZHOU Chengwu. Study on the vibration localization in the centrifugal Impeller with periodic structures[J]. Chinese Journal of Applied Mechanics, 2012, 29(6): 699-704, 775. (in Chinese) doi: 10.11776/cjam.29.06.C005
    [25] 王建军,于长波,姚建尧,等. 失谐叶盘振动模态局部化定量描述方法[J]. 推进技术,2009,30(4): 457-461,473. WANG Jianjun,YU Changbo,YAO Jianyao,et al. Vibratory mode localization factors of mistuned bladed disk assemblies[J]. Journal of Propulsion Technology,2009,30(4): 457-461,473. (in Chinese doi: 10.3321/j.issn:1001-4055.2009.04.014

    WANG Jianjun, YU Changbo, YAO Jianyao, et al. Vibratory mode localization factors of mistuned bladed disk assemblies[J]. Journal of Propulsion Technology, 2009, 30(4): 457-461, 473. (in Chinese) doi: 10.3321/j.issn:1001-4055.2009.04.014
    [26] SUN Hongyun,YUAN Huiqun. Mistuning parameter identification and vibration localization analysis of the integration rotor[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2022,236(2): 238-253. doi: 10.1177/0954410020981465
    [27] 于长波,王建军,李其汉. 失谐叶盘结构的概率响应局部化特性[J]. 航空动力学报,2010,25(9): 2006-2012. YU Changbo,WANG Jianjun,LI Qihan. Probability characteristics for response localization of mistuned bladed disk assemblies[J]. Journal of Aerospace Power,2010,25(9): 2006-2012. (in Chinese

    YU Changbo, WANG Jianjun, LI Qihan. Probability characteristics for response localization of mistuned bladed disk assemblies[J]. Journal of Aerospace Power, 2010, 25(9): 2006-2012. (in Chinese)
    [28] 王奇,贾睿东,杨树华,等. 拉杆转子预紧力建模及其诱发振动局部化研究[J]. 航空动力学报,2023,38(12): 3020-3030. WANG Qi,JIA Ruidong,YANG Shuhua,et al. Modelling of pre-tightening force in rod-fastened rotors and it induced vibration localization[J]. Journal of Aerospace Power,2023,38(12): 3020-3030. (in Chinese

    WANG Qi, JIA Ruidong, YANG Shuhua, et al. Modelling of pre-tightening force in rod-fastened rotors and it induced vibration localization[J]. Journal of Aerospace Power, 2023, 38(12): 3020-3030. (in Chinese)
    [29] 钟一谔,何衍宗,王正,等. 转子动力学[M]. 北京: 清华大学出版社,1987. ZHONG Yi’e,HE Yanzong,WANG Zheng,et al. Rotordynamics[M]. Beijing: Tsinghua University Press,1987. (in Chinese

    ZHONG Yi’e, HE Yanzong, WANG Zheng, et al. Rotordynamics[M]. Beijing: Tsinghua University Press, 1987. (in Chinese)
    [30] 张伟,陈爽,杜双言,等. 制造误差对航发转子同心度的影响[J]. 现代制造技术与装备,2021(8): 26-29. ZHANG Wei,CHEN Shuang,DU Shuangyan,et al. Influence of manufacturing error on concentricity of aeroengine rotor[J]. Modern Manufacturing Technology and Equipment,2021(8): 26-29. (in Chinese doi: 10.3969/j.issn.1673-5587.2021.08.012

    ZHANG Wei, CHEN Shuang, DU Shuangyan, et al. Influence of manufacturing error on concentricity of aeroengine rotor[J]. Modern Manufacturing Technology and Equipment, 2021(8): 26-29. (in Chinese) doi: 10.3969/j.issn.1673-5587.2021.08.012
    [31] 刘洪慧. 航空发动机转子装配不平衡量预测与优化[D]. 辽宁 大连: 大连理工大学,2021. LIU Honghui. Prediction and optimization of imbalance in aero-engine rotor assembly[D]. Dalian Liaoning: Dalian University of Technology,2021. (in Chinese

    LIU Honghui. Prediction and optimization of imbalance in aero-engine rotor assembly[D]. Dalian Liaoning: Dalian University of Technology, 2021. (in Chinese)
    [32] 陈塑寰. 结构动态设计的矩阵摄动理论[M]. 北京: 科学出版社,1999. CHEN Shuhuan. Matrix perturbation theory for structural dynamic design[M]. Beijing: Science Press,1999. (in Chinese

    CHEN Shuhuan. Matrix perturbation theory for structural dynamic design[M]. Beijing: Science Press, 1999. (in Chinese)
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  32
  • HTML浏览量:  29
  • PDF量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 网络出版日期:  2024-03-04

目录

    /

    返回文章
    返回