Hierarchical modeling and elastic property prediction of the needled composite
-
摘要:
针对针刺复合材料中网胎层等结构复杂导致难以划分周期性网格的问题,基于局部径向基点插值模型(LRPIM)发展了非周期性网格的周期性边界条件施加方法。开展X射线断层扫描试验并分析材料微观组织,提取出非针刺区域、针刺绕过区域和针刺穿过区域三种典型特征结构。考虑到针刺复合材料组成成分复杂的特点,提出了基于多特征结构的层次化建模方法,将复杂微观特征结构分解至单一材料相进行精细化建模,并按层次逐级均匀化以获取材料弹性性能。开展针刺复合材料力学性能试验,结果表明
x 方向拉伸模量和面内切变模量的预测误差分别为1.5%和6.4%,验证了所提建模方法的准确性。Abstract:In order to address the problem of complex structures such as random fiber layers in needled composites that make it difficult to assign periodic meshes, a periodic boundary condition imposition method for non-periodic meshes was developed based on the local radial point interpolation model (LRPIM). First, X-ray tomography tests were carried out to analyze the material microstructure, from which three typical characteristic structures of un-needling region, needling bypass region and needling through region were extracted. Subsequently, considering the complex composition of needled composites, a hierarchical modeling method based on multiple feature structures was proposed to decompose the complex microscopic feature structures into single material phases for refinement modeling, and homogenization by level was achieved to obtain the material’s elastic properties. Finally, the mechanical properties tests of the needled composites were carried out. The results showed that the prediction errors of the
x -direction tensile modulus and in-plane shear modulus were 1.5% and 6.4%, respectively, which verified the accuracy of the proposed modeling approach. -
表 1 纤维和基体的材料参数
Table 1. Material parameters of fibers and matrixes
组分 参数 数值 碳纤维[15] 纵向拉伸模量/GPa 230 横向拉伸模量/GPa 18.226 纵向泊松比 0.27 横向泊松比 0.3 纵向切变模量/GPa 36.597 基体 弹性模量/GPa 22.607 泊松比 0.218 表 2 不同纤维的参数a、b取值
Table 2. Values of a and b of different fibers
参数 纤维序号 1 2 3 4 5 6 a/mm 0.05 0.03 0.015 0.005 0 0 b/mm 0.13 0.19 0.255 0.325 0.4 0.48 表 3 等效弹性性能预测
Table 3. Prediction of equivalent elastic properties
GPa 模型 Ex Ey Ez υxy υxz υyz Gxy Gxz Gyz 非针刺-无纬布 81.45 21.69 21.69 0.231 0.231 0.268 13.06 13.06 5.54 非针刺-网胎 20.59 20.37 19.65 0.215 0.221 0.216 7.96 7.52 6.85 非针刺区域 59.93 59.90 20.02 0.230 0.251 0.255 14.27 11.01 10.95 针刺绕过-无纬布 78.36 33.76 37.67 0.223 0.231 0.251 15.59 15.44 7.89 针刺绕过-网胎 18.64 18.61 22.87 0.254 0.220 0.219 7.07 7.45 6.89 针刺绕过模型 53.24 53.01 25.65 0.232 0.226 0.240 14.94 15.34 7.66 针刺穿过模型 42.82 42.78 28.11 0.198 0.180 0.182 12.40 12.74 12.75 宏观模型 53.15 58.15 24.59 0.117 0.090 0.116 13.27 10.21 10.30 试验值 52.37 12.47[15] -
[1] DU Xiangbin,LI Diansen,WEI Qihong,et al. High temperature bending properties and failure mechanism of 3D needled C/SiC composites up to 2000 ℃[J]. Journal of the European Ceramic Society,2022,42(6): 3036-3043. doi: 10.1016/j.jeurceramsoc.2022.01.044 [2] YAO Tianlei,CHEN Xiaoming,LI Jiao,et al. Experimental and numerical study of interlaminar shear property and failure mechanism of none-felt needled composites[J]. Composite Structures,2022,290: 115507.1-115507.11. [3] LIANG Xiaoqiang,GAO Xiguang,ZHANG Huajun,et al. Interlaminar shear behaviors of 2D needled C/SiC composites under compressive and tensile loading[J]. Ceramics International,2021,47(4): 4954-4962. doi: 10.1016/j.ceramint.2020.10.071 [4] CHEN Xiaoming,CHEN Li,ZHANG Chunyan,et al. Three-dimensional needle-punching for composites: a review[J]. Composites: Part A Applied Science and Manufacturing,2016,85: 12-30. doi: 10.1016/j.compositesa.2016.03.004 [5] ARTEIRO A,FURTADO C,CATALANOTTI G,et al. Thin-ply polymer composite materials: a review[J]. Composites Part A: Applied Science and Manufacturing,2020,132: 105777. doi: 10.1016/j.compositesa.2020.105777 [6] 胡殿印,杨尧,郭小军,等. 一种平纹编织复合材料的三维通用单胞模型[J]. 航空动力学报,2019,34(3): 608-615. doi: 10.13224/j.cnki.jasp.2019.03.012HU Dianyin,YANG Yao,GUO Xiaojun,et al. A 3D general method of cells model for plain weave composites[J]. Journal of Aerospace Power,2019,34(3): 608-615. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.03.012 [7] GAO Xuhao,YUAN Li,FU Yutong,et al. Prediction of mechanical properties on 3D braided composites with void defects[J]. Composites: Part B Engineering,2020,197: 108164. doi: 10.1016/j.compositesb.2020.108164 [8] LACOSTE M,LACOMBE A,JOYEZ P,et al. Carbon/carbon extendible nozzles[J]. Acta Astronautica,2002,50(6): 357-367. doi: 10.1016/S0094-5765(01)00178-3 [9] 李明旭. 针刺碳/碳复合材料超高温拉伸力学性能试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.LI Mingxu. Experimental study on ultra-high temperature tensile mechanical properties of needle-punched C/C composites[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese) [10] WAN Fan,LIU Rongjun,WANG Yanfei,et al. In situ observation of compression damage in a 3D needled-punched carbon fiber-silicon carbide ceramic matrix composite[J]. Composite Structures,2019,210: 189-201. doi: 10.1016/j.compstruct.2018.11.041 [11] 李龙,高希光,史剑,等. 考虑孔隙的针刺C/SiC复合材料弹性参数计算[J]. 航空动力学报,2013,28(6): 1257-1263. doi: 10.13224/j.cnki.jasp.2013.06.021LI Long,GAO Xiguang,SHI Jian,et al. Calculation of needled C/SiC composite elastic parameters in consideration of the porosity[J]. Journal of Aerospace Power,2013,28(6): 1257-1263. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.06.021 [12] KOOHBOR B,MONTGOMERY C B,SOTTOS N R. Identification of RVE length scale in fiber composites via combined optical and SEM digital image correlation[J]. Composites Science and Technology,2022,227: 109613. doi: 10.1016/j.compscitech.2022.109613 [13] 贾永臻. 针刺C/C复合材料细观结构表征及力学行为仿真研究[D]. 武汉: 华中科技大学, 2017.JIA Yongzhen. Research on meso-structure characterization and mechanical behavior simulation of needled carbon/carbon composites[D]. Wuhan: Huazhong University of Science and Technology, 2017. (in Chinese) [14] MASSARWA E,ABOUDI J,HAJ-ALI R. A multiscale progressive damage analysis for laminated composite structures using the parametric HFGMC micromechanics[J]. Composite Structures,2018,188: 159-172. doi: 10.1016/j.compstruct.2017.11.089 [15] XIE Junbo,LIANG Jun,FANG Guodong,et al. Effect of needling parameters on the effective properties of 3D needled C/C-SiC composites[J]. Composites Science and Technology,2015,117: 69-77. doi: 10.1016/j.compscitech.2015.06.003 [16] XU Yingjie,ZHANG Pan,LU Huan,et al. Hierarchically modeling the elastic properties of 2D needled carbon/carbon composites[J]. Composite Structures,2015,133: 148-156. doi: 10.1016/j.compstruct.2015.07.081 [17] MENG Songhe,SONG Leying,XU Chenghai,et al. Predicting the effective properties of 3D needled carbon/carbon composites by a hierarchical scheme with a fiber-based representative unit cell[J]. Composite Structures,2017,172: 198-209. doi: 10.1016/j.compstruct.2017.03.090 [18] WU W, OWINO J, AL-OSTAZ A, et al. Applying periodic boundary conditions in finite element analysis[C]//Applying Periodic Boundary Conditions in Finite Element Analysis. Providence, US: SIMULIA Community Conference, 2014: 707-719. [19] 张超,许希武,严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报,2013,34(7): 1636-1645.ZHANG Chao,XU Xiwu,YAN Xue. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites[J]. Acta Aeronautica et Astronautica Sinica,2013,34(7): 1636-1645. (in Chinese) [20] NGUYEN V D,BÉCHET E,GEUZAINE C,et al. Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation[J]. Computational Materials Science,2012,55: 390-406. doi: 10.1016/j.commatsci.2011.10.017 [21] WANG Rongqiao,ZHANG Long,HU Dianyin,et al. A novel approach to impose periodic boundary condition on braided composite RVE model based on RPIM[J]. Composite Structures,2017,163: 77-88. doi: 10.1016/j.compstruct.2016.12.032 [22] TANG Sufang,HU Chenglong. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review[J]. Journal of Materials Science & Technology,2017,33(2): 117-130. [23] YU Jian,ZHOU Chuwei,ZHANG Haijun. A micro-image based reconstructed finite element model of needle-punched C/C composite[J]. Composites Science and Technology,2017,153: 48-61. doi: 10.1016/j.compscitech.2017.09.029 [24] KWON Y W, ALLEN D H, TALREJA R. Multiscale Modeling and Simulation of Composite Materials and Structures[M]. Boston, MA: Springer US, 2008. [25] TIAN Wenlong,QI Lehua,ZHOU Jiming,et al. Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications[J]. Composite Structures,2015,131: 366-373. doi: 10.1016/j.compstruct.2015.05.014 [26] WANG Rongqiao,LIU Yu,LIU Xi,et al. Assessment of mechanical properties for three-dimensional needled composites: a geometric partitioning strategy dealing with mesoscopic needling damage[J]. Materials,2022,15(16): 5659. doi: 10.3390/ma15165659 [27] MAO Jianxing,HU Dianyin,LI Da,et al. Novel adaptive surrogate model based on LRPIM for probabilistic analysis of turbine disc[J]. Aerospace Science and Technology,2017,70: 76-87. doi: 10.1016/j.ast.2017.07.044 [28] WANG Rongqiao,LIU Xi,HU Dianyin,et al. Reliability assessment for system-level turbine disc structure using LRPIM-based surrogate model considering multi-failure modes correlation[J]. Aerospace Science and Technology,2019,95: 105422. doi: 10.1016/j.ast.2019.105422 [29] SUN Yueqi,HONG Changqing,ZHANG Xinghong,et al. Preparation and properties of SiOC ceramic modified carbon fiber needled felt preform composites[J]. Ceramics International,2020,46(2): 1743-1749. doi: 10.1016/j.ceramint.2019.09.148 [30] 谢军波. 针刺预制体工艺参数建模及复合材料本构关系研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.XIE Junbo. Parametric modeling of needling process and constitutive relationship of needled composite[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese) -