Lateral force regulation characteristic of a three-tab mechanism
-
摘要:
针对扰流片机构3个扰流片圆周对称的布局特点、径向旋转的作动方式,本文提出一种仅以三扰流片旋转角为变量的侧向力计算方案。数值计算和试验结果表明:该扰流片机构进行推力矢量调节时,喷管扩张段壁面几乎不产生侧向力,侧向力主要由3个扰流片配合差动产生。俯仰侧力与2号扰流片和1、3号扰流片旋转角平均值之差呈正相关;偏航侧力与1、3号扰流片旋转角之差呈正相关。在进行起始角度为52°,终止角度为23°的小角度调节时,三扰流片间气动力干扰很小,在3%以内,推力损失与扰流片旋转角近似呈线性关系。侧向力计算结果与试验结果偏差在6%以内,验证了该方法的正确性,所提出的计算式具有封闭可解性,能够根据推力损失和俯偏方向的期望侧向力反向求解出目标旋转角,进而提供一种三扰流片机构姿态调节的方法。
Abstract:In view of the layout feature of three tabs in circular symmetry and action mode of radial rotation, a lateral force calculation scheme with only three-tab rotation angles as variables was proposed. Numerical and experimental results showed that the lateral force on the wall of nozzle expansion section was almost non-existent when thrust vector was adjusted by the mechanism, and lateral force was mainly generated by differential action of three tabs. The pitch force was positively correlated with difference value between average rotation angle of spoiler 2 and spoiler 1, spoiler 3. The yaw force was positively correlated with difference value between rotation angle of spoiler 1 and spoiler 3. When performing small angle adjustment with a starting angle of 52° and ending angle of 23°, the aerodynamic interference between three tabs was small to be within 3%, and the thrust loss was approximately linear with tab rotation angle. The deviation of the calculation result of lateral force from the test result was less than 6%, which verified the correctness of this method. The proposed formula had closed solvability, and the rotation angle of the target can be solved according to thrust loss and expected lateral force in reverse solving, thus providing a method for attitude adjustment of three-tab mechanism.
-
表 1 模型尺寸
Table 1. Specific dimensions of geometry model
参数 数值 喷管喉径/mm 10 喷管出口直径/mm 20 扩张比 4 扩张半角/(°) 10 梯形扰流片上底/mm 9.2 梯形扰流片下底/mm 16.8 梯形扰流片斜边/mm 20.4 等腰梯形扰流片锐角/(°) 79 转轴到扰流片表面距离/mm 32.446 扰流片面积/mm2 295.12 表 2 燃烧室相关参数
Table 2. Relative parameters of combustion chamber
参数 数值 燃烧室总压/MPa 4.75 燃烧室总温/K 2200 推进剂密度/(kg/m3) 1.62 比热比 1.2 气体常数/(J/(kg·K)) 287.02 表 3 发动机点火试验工况
Table 3. Ignition test conditions of engine
参数 数值 喷管喉径/mm 10 燃速/(mm/s) 9.1 燃烧室压强/MPa 4.75 未调节推力/N 430 表 4 数值计算与试验得到的推力矢量对比
Table 4. Comparison between numerical calculation and experiment of thrust vector
参数 $ {F}_{x} $ $ {F}_{y} $ $ {F}_{{\textit{z}}} $ 数值计算结果/N −60.42 −34.88 47.35 试验结果/N −62.84 −34.08 50.16 偏差/% 3.85 2.35 5.60 -
[1] 谢永强,李舜,周须峰,等. 推力矢量技术在空空导弹上的应用分析[J]. 科学技术与工程,2009,9(20): 6109-6113. XIE Yongqiang,LI Shun,ZHOU Xufeng,et al. The application analysis of thrust vector control systems of air to air missile[J]. Science Technology and Engineering,2009,9(20): 6109-6113. (in Chinese doi: 10.3969/j.issn.1671-1815.2009.20.033XIE Yongqiang, LI Shun, ZHOU Xufeng, et al. The application analysis of thrust vector control systems of air to air missile[J]. Science Technology and Engineering, 2009, 9(20): 6109-6113. (in Chinese) doi: 10.3969/j.issn.1671-1815.2009.20.033 [2] 高峰,唐胜景,师娇. 推力矢量控制技术在导弹上的应用[J]. 飞航导弹,2010(12): 52-59,66. GAO Feng,TANG Shengjing,SHI Jiao. Application of thrust vector control technology in missile[J]. Aerodynamic Missile Journal,2010(12): 52-59,66. (in ChineseGAO Feng, TANG Shengjing, SHI Jiao. Application of thrust vector control technology in missile[J]. Aerodynamic Missile Journal, 2010(12): 52-59, 66. (in Chinese) [3] LAI Qingfu,DAI Huanyao,ZHAO Jing,et al. A novel approach of countering centroid jamming by using INS information in terminal guidance[C]//Proceedings of IEEE 10th International Conference on Signal Processing Proceedings. Piscataway,US: IEEE,2010: 2121-2124. [4] 袁斌. 纳尔卡电子诱饵弹建模与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学,2018. YUAN Bin. Research on modeling and control method of nulka active missile decoy[D]. Harbin: Harbin Institute of Technology,2018. (in ChineseYUAN Bin. Research on modeling and control method of nulka active missile decoy[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese) [5] 高昱,康文俊,周航,等. 舰船导弹发射系统导流装置设计方法与研究[J]. 弹箭与制导学报,2019,39(2): 129-134. GAO Yu,KANG Wenjun,ZHOU Hang,et al. Design method and research of guidance device for missile launch system on ship[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2019,39(2): 129-134. (in ChineseGAO Yu, KANG Wenjun, ZHOU Hang, et al. Design method and research of guidance device for missile launch system on ship[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(2): 129-134. (in Chinese) [6] BOWERS A H,PAHLE J W. Thrust vectoring on the NASA F-18 high alpha research vehicle: NASA-TM-4771 [R]. Edwards,US: NASA Dryden Flight Research Center,1996. [7] ASBURY S C,CAPONE F J. Multiaxis thrust-vectoring characteristics of a model representative of the F-18 high-alpha research vehicle at angles of attack from 0 to 70: NASA TP-3531 [R]. Hampton,US: NASA Langley Research Center,1995. [8] LALLMAN F J,DAVIDSON J B,MURPHY P C. A method for integrating thrust-vectoring and actuated forebody strakes with conventional aerodynamic controls on a high-performance fighter airplane: NASA/TP-1998-208464 [R]. Hampton,US: NASA Langley Research Center,1998. [9] 王晓辉,刘志勇,褚学森. 扰流片式推力矢量控制的气动力学研究[J]. 船舶力学,2019,23(7): 791-801. WANG Xiaohui,LIU Zhiyong,CHU Xuesen. Gas dynamics research on thrust vector control with spoiler[J]. Journal of Ship Mechanics,2019,23(7): 791-801. (in Chinese doi: 10.3969/j.issn.1007-7294.2019.07.005WANG Xiaohui, LIU Zhiyong, CHU Xuesen. Gas dynamics research on thrust vector control with spoiler[J]. Journal of Ship Mechanics, 2019, 23(7): 791-801. (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.07.005 [10] 钟华. 扰流片式弹射火箭推力矢量控制技术研究[D]. 西安: 西北工业大学,2005. ZHONG Hua. Study on a thrust-vector control technique of the ejection-rocket with the spoiler[D]. Xi’an: Northwestern Polytechnical University,2005. (in ChineseZHONG Hua. Study on a thrust-vector control technique of the ejection-rocket with the spoiler[D]. Xi’an: Northwestern Polytechnical University, 2005. (in Chinese) [11] HOLLSTEIN H J. Jet tab thrust vector control[J]. Journal of Spacecraft and Rockets,1965,2(6): 927-930. doi: 10.2514/3.28316 [12] EATOUGH R. Jet tab thrust vector control system demonstration: AIAA1971-752 [R]. Reston,US: AIAA,1971. [13] 韩文超. 扰流片式推力矢量控制系统特性研究 [D]. 南京: 南京理工大学,2012. HAN Wenchao. Study on characteristics of spoiler thrust vector control system[D]. Nanjing: Nanjing University of Science and Technology,2012. (in ChineseHAN Wenchao. Study on characteristics of spoiler thrust vector control system[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese) [14] 丛戎飞,吴军强,张长丰,等. 扰流片式推力矢量喷管气动特性数值模拟研究[J]. 空气动力学学报,2019,37(2): 234-241. CONG Rongfei,WU Junqiang,ZHANG Changfeng,et al. Numerical research on jet tab thrust vector nozzle aerodynamic characteristic[J]. Acta Aerodynamica Sinica,2019,37(2): 234-241. (in ChineseCONG Rongfei, WU Junqiang, ZHANG Changfeng, et al. Numerical research on jet tab thrust vector nozzle aerodynamic characteristic[J]. Acta Aerodynamica Sinica, 2019, 37(2): 234-241. (in Chinese) [15] THANIGAIARASU S,JAYAPRAKASH S,ELANGOVAN S,et al. Influence of tab geometry and its orientation on under-expanded sonic jets[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2008,222(3): 331-339. doi: 10.1243/09544100JAERO299 [16] 童悦,郑庆,李修明,等. 一种多扰流片装置的推力矢量特性数值研究[J]. 固体火箭技术,2021,44(3): 337-342. TONG Yue,ZHENG Qing,LI Xiuming,et al. Numerical investigation on flow structure characteristics of a multiple tabs system[J]. Journal of Solid Rocket Technology,2021,44(3): 337-342. (in Chinese doi: 10.7673/j.issn.1006-2793.2021.03.007TONG Yue, ZHENG Qing, LI Xiuming, et al. Numerical investigation on flow structure characteristics of a multiple tabs system[J]. Journal of Solid Rocket Technology, 2021, 44(3): 337-342. (in Chinese) doi: 10.7673/j.issn.1006-2793.2021.03.007 [17] 李军. 推力矢量发动机燃气舵气动性能分析[J]. 航空学报,2006,27(6): 1005-1008. LI Jun. Analysis of aerodynamic performance of et vane of thrust-vector motor[J]. Acta Aeronautica et Astronautica Sinica,2006,27(6): 1005-1008. (in Chinese doi: 10.3321/j.issn:1000-6893.2006.06.003LI Jun. Analysis of aerodynamic performance of et vane of thrust-vector motor[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1005-1008. (in Chinese) doi: 10.3321/j.issn:1000-6893.2006.06.003 [18] 王恒宇,孙中文,李畅,等. 燃气舵控制力影响因素的数值模拟[J]. 弹箭与制导学报,2018,38(5): 60-64. WANG Hengyu,SUN Zhongwen,LI Chang,et al. Numerical simulation on influence factors of jet vane control[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2018,38(5): 60-64. (in ChineseWANG Hengyu, SUN Zhongwen, LI Chang, et al. Numerical simulation on influence factors of jet vane control[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(5): 60-64. (in Chinese) [19] 陈运剑,刘畅,帅超. 推力可调节固体火箭发动机气动仿真[J]. 机械工程与自动化,2019(5): 102-103,106. CHEN Yunjian,LIU Chang,SHUAI Chao. Aerodynamic simulation of thrust-adjustable solid-propellant rocket engine[J]. Mechanical Engineering & Automation,2019(5): 102-103,106. (in Chinese doi: 10.3969/j.issn.1672-6413.2019.05.039CHEN Yunjian, LIU Chang, SHUAI Chao. Aerodynamic simulation of thrust-adjustable solid-propellant rocket engine[J]. Mechanical Engineering & Automation, 2019(5): 102-103, 106. (in Chinese) doi: 10.3969/j.issn.1672-6413.2019.05.039 [20] 马武举,杨海涛. 某舰载扰流片式导弹主推力气动仿真[J]. 数字海洋与水下攻防,2021,4(4): 305-309. MA Wuju,YANG Haitao. Aerodynamic simulation on spoiler thrust for a ship-borne missile[J]. Digital Ocean & Underwater Warfare,2021,4(4): 305-309. (in ChineseMA Wuju, YANG Haitao. Aerodynamic simulation on spoiler thrust for a ship-borne missile[J]. Digital Ocean & Underwater Warfare, 2021, 4(4): 305-309. (in Chinese) [21] 夏飞,黄金泉,周文祥. 基于MATLAB/SIMULINK的航空发动机建模与仿真研究[J]. 航空动力学报,2007,22(12): 2134-2138. XIA Fei,HUANG Jinquan,ZHOU Wenxiang. Modeling of and simulation research on turbofan engine based on MATLAB/SIMULINK[J]. Journal of Aerospace Power,2007,22(12): 2134-2138. (in Chinese doi: 10.3969/j.issn.1000-8055.2007.12.027XIA Fei, HUANG Jinquan, ZHOU Wenxiang. Modeling of and simulation research on turbofan engine based on MATLAB/SIMULINK[J]. Journal of Aerospace Power, 2007, 22(12): 2134-2138. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.12.027 [22] GAMBLING D,CROZIER M,NORTHAM D. NULKA a compelling story [M]. Adelaide,Australia: Defence Science and Technology Organization,2013. [23] GONZALEZ D. Analysis of shock structures about a rocket motor thrust control unit using CFD: AIAA2011-390 [R]. Reston,US: AIAA,2011. [24] 宋扬. 燃气舵推矢装置稳态及动态气动特性研究[J]. 航空兵器,2014,21(2): 41-43. SONG Yang. The investigation of jet vane aerodynamic characteristics under steady and dynamic conditions[J]. Aero Weaponry,2014,21(2): 41-43. (in Chinese doi: 10.3969/j.issn.1673-5048.2014.02.010SONG Yang. The investigation of jet vane aerodynamic characteristics under steady and dynamic conditions[J]. Aero Weaponry, 2014, 21(2): 41-43. (in Chinese) doi: 10.3969/j.issn.1673-5048.2014.02.010 [25] 汪学江. 燃气舵的舵间气动干扰分析[J]. 宇航学报,1994,15(3): 50-54,63,104. WANG Xuejiang. Analysis of aerodynamic interference between rudders of gas rudder[J]. Journal of Astronautics,1994,15(3): 50-54,63,104. (in ChineseWANG Xuejiang. Analysis of aerodynamic interference between rudders of gas rudder[J]. Journal of Astronautics, 1994, 15(3): 50-54, 63, 104. (in Chinese) [26] 杨帆. 舷外诱饵弹定高飞行控制技术研究[D]. 湖北 宜昌: 中国舰船研究院,2018. YANG Fan. Research on Invariableness Altitude Flight Control Technology of Outboard Decoy Projectile[D]. Yichang Hubei: China Ship Research Institute,2018. (in ChineseYANG Fan. Research on Invariableness Altitude Flight Control Technology of Outboard Decoy Projectile[D]. Yichang Hubei: China Ship Research Institute, 2018. (in Chinese) -