留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种三扰流片机构的侧向力调节特性

张汝衡 杨军 姚保江 杨石林 张兵峰

张汝衡, 杨军, 姚保江, 等. 一种三扰流片机构的侧向力调节特性[J]. 航空动力学报, 2024, 39(10):20220733 doi: 10.13224/j.cnki.jasp.20220733
引用本文: 张汝衡, 杨军, 姚保江, 等. 一种三扰流片机构的侧向力调节特性[J]. 航空动力学报, 2024, 39(10):20220733 doi: 10.13224/j.cnki.jasp.20220733
ZHANG Ruheng, YANG Jun, YAO Baojiang, et al. Lateral force regulation characteristic of a three-tab mechanism[J]. Journal of Aerospace Power, 2024, 39(10):20220733 doi: 10.13224/j.cnki.jasp.20220733
Citation: ZHANG Ruheng, YANG Jun, YAO Baojiang, et al. Lateral force regulation characteristic of a three-tab mechanism[J]. Journal of Aerospace Power, 2024, 39(10):20220733 doi: 10.13224/j.cnki.jasp.20220733

一种三扰流片机构的侧向力调节特性

doi: 10.13224/j.cnki.jasp.20220733
详细信息
    作者简介:

    张汝衡(1998-),女,硕士生,主要从事固体火箭发动机总体方面的研究。E-mail:litingbuhui@qq.com

  • 中图分类号: V432

Lateral force regulation characteristic of a three-tab mechanism

  • 摘要:

    针对扰流片机构三个扰流片圆周对称的布局特点、径向旋转的作动方式,本文提出一种仅以三扰流片旋转角为变量的侧向力计算方案。数值计算和试验结果表明,该扰流片机构进行推力矢量调节时,喷管扩张段壁面几乎不产生侧向力,侧向力主要由三个扰流片配合差动产生。俯仰侧力与2号扰流片和1、3号扰流片旋转角平均值之差呈正相关;偏航侧力与1、3号扰流片旋转角之差呈正相关。在进行起始角度为52°,终止角度为23°的小角度调节时,三扰流片间气动力干扰很小,在3%以内,推力损失与扰流片旋转角近似呈线性关系。侧向力计算结果与试验结果偏差在6%以内,验证了该方法的正确性,所提出的计算式具有封闭可解性,能够根据推力损失和俯偏方向的期望侧向力反向求解出目标旋转角,进而提供一种三扰流片机构姿态调节的方法。

     

  • 图 1  三扰流片机构简图

    Figure 1.  Three-spoiler mechanism view

    图 2  侧向力产生原理示意图

    Figure 2.  Schematic diagram of lateral force generation principle

    图 3  几何模型

    Figure 3.  Geometry model

    图 4  仿真模型网格划分

    Figure 4.  Mesh for simulation model

    图 5  网格无关性验证

    Figure 5.  Grid independence verification

    图 6  边界条件设置示意图

    Figure 6.  Schematic diagram of boundary conditions setting

    图 7  推力矢量发动机试验装置

    Figure 7.  Test apparatus of thrust vector engine

    图 8  喷管尾焰与仿真结果对比图

    Figure 8.  Comparison of nozzle tail flame and simulation result

    图 9  侧向力调节特性

    Figure 9.  Adjustment characteristic of lateral force

    图 10  m处马赫数云图切片

    Figure 10.  Section of Mach number cloud diagram at point m

    图 11  推力损失对比

    Figure 11.  Comparison of thrust loss

    图 12  式(1)偏差曲线

    Figure 12.  Error curve of formula (1)

    图 13  不同旋转角下的马赫数线图

    Figure 13.  Graph of Mach number at different rotation angles

    图 14  推力矢量几何关系

    Figure 14.  Thrust vector geometry

    图 15  气动力投影关系对比图

    Figure 15.  Comparison of aerodynamic projection relations

    图 16  旋转角指令

    Figure 16.  Rotation Angle command

    图 17  试验校验

    Figure 17.  Experimental calibration

    表  1  模型尺寸

    Table  1.   Specific dimensions of geometry model

    参数数值
    喷管喉径/mm10
    喷管出口直径/mm20
    扩张比4
    扩张半角/(°)10
    梯形扰流片上底/mm9.2
    梯形扰流片下底/mm16.8
    梯形扰流片斜边/mm20.4
    等腰梯形扰流片锐角/(°)79
    转轴到扰流片表面距离/mm32.446
    扰流片面积/mm2295.12
    下载: 导出CSV

    表  2  燃烧室相关参数

    Table  2.   Relative parameters of combustion chamber

    参数 数值
    燃烧室总压/MPa 4.75
    燃烧室总温/K 2200
    推进剂密度/(kg/m3 1.62
    比热比 1.2
    气体常数/(J/(kg·K)) 287.02
    下载: 导出CSV

    表  3  发动机点火试验工况

    Table  3.   Ignition test conditions of engine

    参数 数值
    喷管喉径/mm 10
    燃速/(mm/s) 9.1
    燃烧室压强/MPa 4.75
    未调节推力/N 430
    下载: 导出CSV

    表  4  数值计算与试验得到的推力矢量对比

    Table  4.   Comparison between numerical calculation and experiment of thrust vector

    参数 $ {F}_{x} $ $ {F}_{y} $ $ {F}_{z} $
    数值计算结果/N −60.42 −34.88 47.35
    试验结果/N −62.84 −34.08 50.16
    偏差/% 3.85 2.35 5.60
    下载: 导出CSV
  • [1] 谢永强,李舜,周须峰,等. 推力矢量技术在空空导弹上的应用分析[J]. 科学技术与工程,2009,9(20): 6109-6113. XIE Yongqiang,LI Shun,ZHOU Xufeng,et al. The application analysis of thrust vector control systems of air to air missile[J]. Science Technology and Engineering,2009,9(20): 6109-6113. (in Chinese doi: 10.3969/j.issn.1671-1815.2009.20.033

    XIE Yongqiang, LI Shun, ZHOU Xufeng, et al. The application analysis of thrust vector control systems of air to air missile[J]. Science Technology and Engineering, 2009, 9(20): 6109-6113. (in Chinese) doi: 10.3969/j.issn.1671-1815.2009.20.033
    [2] 高峰,唐胜景,师娇. 推力矢量控制技术在导弹上的应用[J]. 飞航导弹,2010(12): 52-59,66. GAO Feng,TANG Shengjing,SHI Jiao. Application of thrust vector control technology in missile[J]. Aerodynamic Missile Journal,2010(12): 52-59,66. (in Chinese

    GAO Feng, TANG Shengjing, SHI Jiao. Application of thrust vector control technology in missile[J]. Aerodynamic Missile Journal, 2010(12): 52-59, 66. (in Chinese)
    [3] LAI Qingfu,DAI Huanyao,ZHAO Jing,et al. A novel approach of countering centroid jamming by using INS information in terminal guidance[C]//Proceedings of IEEE 10th International Conference on Signal Processing Proceedings. Piscataway,US: IEEE,2010: 2121-2124.
    [4] 袁斌. 纳尔卡电子诱饵弹建模与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学,2018. YUAN Bin. Research on modeling and control method of nulka active missile decoy[D]. Harbin: Harbin Institute of Technology,2018. (in Chinese

    YUAN Bin. Research on modeling and control method of nulka active missile decoy[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [5] 高昱,康文俊,周航,等. 舰船导弹发射系统导流装置设计方法与研究[J]. 弹箭与制导学报,2019,39(2): 129-134. GAO Yu,KANG Wenjun,ZHOU Hang,et al. Design method and research of guidance device for missile launch system on ship[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2019,39(2): 129-134. (in Chinese

    GAO Yu, KANG Wenjun, ZHOU Hang, et al. Design method and research of guidance device for missile launch system on ship[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(2): 129-134. (in Chinese)
    [6] BOWERS A H,PAHLE J W. Thrust vectoring on the NASA F-18 high alpha research vehicle: NASA-TM-4771 [R]. Edwards,US: NASA Dryden Flight Research Center,1996.
    [7] ASBURY S C,CAPONE F J. Multiaxis thrust-vectoring characteristics of a model representative of the F-18 high-alpha research vehicle at angles of attack from 0 to 70: NASA TP-3531 [R]. Hampton,US: NASA Langley Research Center,1995.
    [8] LALLMAN F J,DAVIDSON J B,MURPHY P C. A method for integrating thrust-vectoring and actuated forebody strakes with conventional aerodynamic controls on a high-performance fighter airplane: NASA/TP-1998-208464 [R]. Hampton,US: NASA Langley Research Center,1998.
    [9] 王晓辉,刘志勇,褚学森. 扰流片式推力矢量控制的气动力学研究[J]. 船舶力学,2019,23(7): 791-801. WANG Xiaohui,LIU Zhiyong,CHU Xuesen. Gas dynamics research on thrust vector control with spoiler[J]. Journal of Ship Mechanics,2019,23(7): 791-801. (in Chinese doi: 10.3969/j.issn.1007-7294.2019.07.005

    WANG Xiaohui, LIU Zhiyong, CHU Xuesen. Gas dynamics research on thrust vector control with spoiler[J]. Journal of Ship Mechanics, 2019, 23(7): 791-801. (in Chinese) doi: 10.3969/j.issn.1007-7294.2019.07.005
    [10] 钟华. 扰流片式弹射火箭推力矢量控制技术研究[D]. 西安: 西北工业大学,2005. ZHONG Hua. Study on a thrust-vector control technique of the ejection-rocket with the spoiler[D]. Xi’an: Northwestern Polytechnical University,2005. (in Chinese

    ZHONG Hua. Study on a thrust-vector control technique of the ejection-rocket with the spoiler[D]. Xi’an: Northwestern Polytechnical University, 2005. (in Chinese)
    [11] HOLLSTEIN H J. Jet tab thrust vector control[J]. Journal of Spacecraft and Rockets,1965,2(6): 927-930. doi: 10.2514/3.28316
    [12] EATOUGH R. Jet tab thrust vector control system demonstration: AIAA1971-752 [R]. Reston,US: AIAA,1971.
    [13] 韩文超. 扰流片式推力矢量控制系统特性研究 [D]. 南京: 南京理工大学,2012. HAN Wenchao. Study on Characteristics of Spoiler Thrust Vector Control System[D]. Nanjing: Nanjing University of Science and Technology,2012. (in Chinese

    HAN Wenchao. Study on Characteristics of Spoiler Thrust Vector Control System[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese)
    [14] 丛戎飞,吴军强,张长丰,等. 扰流片式推力矢量喷管气动特性数值模拟研究[J]. 空气动力学学报,2019,37(2): 234-241. CONG Rongfei,WU Junqiang,ZHANG Changfeng,et al. Numerical research on jet tab thrust vector nozzle aerodynamic characteristic[J]. Acta Aerodynamica Sinica,2019,37(2): 234-241. (in Chinese

    CONG Rongfei, WU Junqiang, ZHANG Changfeng, et al. Numerical research on jet tab thrust vector nozzle aerodynamic characteristic[J]. Acta Aerodynamica Sinica, 2019, 37(2): 234-241. (in Chinese)
    [15] THANIGAIARASU S,JAYAPRAKASH S,ELANGOVAN S,et al. Influence of tab geometry and its orientation on under-expanded sonic jets[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2008,222(3): 331-339. doi: 10.1243/09544100JAERO299
    [16] 童悦,郑庆,李修明,等. 一种多扰流片装置的推力矢量特性数值研究[J]. 固体火箭技术,2021,44(3): 337-342. TONG Yue,ZHENG Qing,LI Xiuming,et al. Numerical investigation on flow structure characteristics of a multiple tabs system[J]. Journal of Solid Rocket Technology,2021,44(3): 337-342. (in Chinese doi: 10.7673/j.issn.1006-2793.2021.03.007

    TONG Yue, ZHENG Qing, LI Xiuming, et al. Numerical investigation on flow structure characteristics of a multiple tabs system[J]. Journal of Solid Rocket Technology, 2021, 44(3): 337-342. (in Chinese) doi: 10.7673/j.issn.1006-2793.2021.03.007
    [17] 李军. 推力矢量发动机燃气舵气动性能分析[J]. 航空学报,2006,27(6): 1005-1008. LI Jun. Analysis of aerodynamic performance of et vane of thrust-vector motor[J]. Acta Aeronautica et Astronautica Sinica,2006,27(6): 1005-1008. (in Chinese doi: 10.3321/j.issn:1000-6893.2006.06.003

    LI Jun. Analysis of aerodynamic performance of et vane of thrust-vector motor[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(6): 1005-1008. (in Chinese) doi: 10.3321/j.issn:1000-6893.2006.06.003
    [18] 王恒宇,孙中文,李畅,等. 燃气舵控制力影响因素的数值模拟[J]. 弹箭与制导学报,2018,38(5): 60-64. WANG Hengyu,SUN Zhongwen,LI Chang,et al. Numerical simulation on influence factors of jet vane control[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2018,38(5): 60-64. (in Chinese

    WANG Hengyu, SUN Zhongwen, LI Chang, et al. Numerical simulation on influence factors of jet vane control[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2018, 38(5): 60-64. (in Chinese)
    [19] 陈运剑,刘畅,帅超. 推力可调节固体火箭发动机气动仿真[J]. 机械工程与自动化,2019(5): 102-103,106. CHEN Yunjian,LIU Chang,SHUAI Chao. Aerodynamic simulation of thrust-adjustable solid-propellant rocket engine[J]. Mechanical Engineering & Automation,2019(5): 102-103,106. (in Chinese doi: 10.3969/j.issn.1672-6413.2019.05.039

    CHEN Yunjian, LIU Chang, SHUAI Chao. Aerodynamic simulation of thrust-adjustable solid-propellant rocket engine[J]. Mechanical Engineering & Automation, 2019(5): 102-103, 106. (in Chinese) doi: 10.3969/j.issn.1672-6413.2019.05.039
    [20] 马武举,杨海涛. 某舰载扰流片式导弹主推力气动仿真[J]. 数字海洋与水下攻防,2021,4(4): 305-309. MA Wuju,YANG Haitao. Aerodynamic simulation on spoiler thrust for a ship-borne missile[J]. Digital Ocean & Underwater Warfare,2021,4(4): 305-309. (in Chinese

    MA Wuju, YANG Haitao. Aerodynamic simulation on spoiler thrust for a ship-borne missile[J]. Digital Ocean & Underwater Warfare, 2021, 4(4): 305-309. (in Chinese)
    [21] 夏飞,黄金泉,周文祥. 基于MATLAB/SIMULINK的航空发动机建模与仿真研究[J]. 航空动力学报,2007,22(12): 2134-2138. XIA Fei,HUANG Jinquan,ZHOU Wenxiang. Modeling of and simulation research on turbofan engine based on MATLAB/SIMULINK[J]. Journal of Aerospace Power,2007,22(12): 2134-2138. (in Chinese doi: 10.3969/j.issn.1000-8055.2007.12.027

    XIA Fei, HUANG Jinquan, ZHOU Wenxiang. Modeling of and simulation research on turbofan engine based on MATLAB/SIMULINK[J]. Journal of Aerospace Power, 2007, 22(12): 2134-2138. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.12.027
    [22] GAMBLING D,CROZIER M,NORTHAM D. NULKA a Compelling Story [M]. Adelaide,Australia: Defence Science and Technology Organization,2013.
    [23] GONZALEZ D. Analysis of shock structures about a rocket motor thrust control unit using CFD: AIAA2011-390 [R]. Reston,US: AIAA,2011.
    [24] 宋扬. 燃气舵推矢装置稳态及动态气动特性研究[J]. 航空兵器,2014,21(2): 41-43. SONG Yang. The investigation of jet vane aerodynamic characteristics under steady and dynamic conditions[J]. Aero Weaponry,2014,21(2): 41-43. (in Chinese doi: 10.3969/j.issn.1673-5048.2014.02.010

    SONG Yang. The investigation of jet vane aerodynamic characteristics under steady and dynamic conditions[J]. Aero Weaponry, 2014, 21(2): 41-43. (in Chinese) doi: 10.3969/j.issn.1673-5048.2014.02.010
    [25] 汪学江. 燃气舵的舵间气动干扰分析[J]. 宇航学报,1994,15(3): 50-54,63,104. WANG Xuejiang. Analysis of aerodynamic interference between rudders of gas rudder[J]. Journal of Astronautics,1994,15(3): 50-54,63,104. (in Chinese

    WANG Xuejiang. Analysis of aerodynamic interference between rudders of gas rudder[J]. Journal of Astronautics, 1994, 15(3): 50-54, 63, 104. (in Chinese)
    [26] 杨帆. 舷外诱饵弹定高飞行控制技术研究[D]. 湖北 宜昌: 中国舰船研究院,2018. YANG Fan. Research on Invariableness Altitude Flight Control Technology of Outboard Decoy Projectile[D]. Yichang Hubei: China Ship Research Institute,2018. (in Chinese

    YANG Fan. Research on Invariableness Altitude Flight Control Technology of Outboard Decoy Projectile[D]. Yichang Hubei: China Ship Research Institute, 2018. (in Chinese)
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  22
  • HTML浏览量:  13
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 网络出版日期:  2024-04-01

目录

    /

    返回文章
    返回