Dynamic characteristics analysis of the complex rotor-blade system for the aero-turboshaft engine
-
摘要:
基于赫兹接触理论与数理统计相结合的方法,构建了含有弹性、弹-塑性、完全塑性的3个变形过程在内的端齿等效接触动力学模型。针对航空涡轴转子系统复杂的结构特征,采用有限元和哈密顿变分原理建立了含有接触效应的端齿连接结构在内的航空发动机复杂转子-叶片耦合系统的动力学分析模型,并通过与有限元结果对比验证了模型的有效性。在此基础上,研究了不同预紧力作用下耦合系统的固有频率、稳态响应以及瞬态不平衡响应特性。研究结果表明预紧力对端齿连接结构的接触状态影响非常明显,在预紧松弛状态下,其连接界面滑移会引起有效接触界面的抗弯刚度和抗扭刚度的减少,从而引起端齿连接刚度下降,同时在耦合系统的轮盘处
x 方向,扭转振动与叶尖弯曲方向处的瞬态和稳态不平衡响应的幅值有明显放大现象,而当预紧力设计范围为2.0×104~2.0×105 N,此时端齿连接结构近似等效于刚性连接。本文研究结果可为含有端齿连接结构的航空涡轴发动机轴向预紧力的设计提供了定量的参考依据。-
关键词:
- 端齿预紧 /
- 接触模型 /
- 航空涡轴发动机 /
- 稳态和瞬态不平衡响应 /
- 动力学特性
Abstract:The equivalent contact model of the end-tooth connection including three stages such as the elastic, elastoplastic and plastic deformation was proposed using the Hertz contact theory in conjunction with the mathematical statistics method. In view of the complex structure of the aero-turboshaft engine, the general dynamic model of the complex rotor blade system, including the end tooth connection considering the contact effect, was established based on the finite element method and Hamilton's variance principle. The concrete finite element results demonstrated the validity and correctness of the analytical model. And on the basis, the effects of the pre-tightening forces on the natural frequencies, transient and steady unbalance responses were further investigated. The results showed that the effects of the pre-tightening forces had a significant effect on the contact state of the end-tooth connection. In the relaxation state of the pre-tightening force, the slippage of contact interface can reduce the bending and torsional stiffness of the end-tooth connection, leading to a decrease in the connection stiffness of the end-tooth connection. For the transient and steady-state unbalanced responses, there existed obvious amplitude amplification phenomena in the rotor vibration in
x direction, torsional direction and bending vibration of the blade tip. The saturation stage of the pre-tightening force was selected at the range of 2.0×104—2.0×105 N, the end tooth connection was approximately equivalent to the rigid connection. The results provide a quantitative reference for the design of the aero-turboshaft engine considering the end-tooth connection under the action of the pre-tightening forces. -
表 1 在预紧力160 kN作用下,考虑端齿连接结构的耦合系统在Ω=0 r/min的固有频率
Table 1. Natural frequencies of the coupling system for the turboshaft engine under F0=160 kN and Ω=0 r/min
阶数 固有频率/ Hz 误差/% 振型描述 解析解 有限元解 f(n1) 93.02 92.06 0.26 1阶扭转 f(n2) 103.38 103.63 0.06 轴的轴向振动 f(n4) 173.21 171.08 0.31 平动与弯曲 f(n5) 478.90 472.56 0.33 俯仰振动 f(n7) 529.18 539.42 0.48 叶片与阶梯轴扭转
耦合(耦合反向)f(n8) 546.63 557.87 0.51 叶片弯曲 f(n15) 910.85 961.86 1.36 中心拉杆1阶弯曲 f(n17) 1117.90 1123.70 0.13 2阶扭转 f(n18) 1377.24 1364.80 0.23 转子1阶弯曲 注:耦合同向表示两个轮盘上的叶片弯曲模态方向相同,反之亦然。 -
[1] 邹望之,郑新前. 航空涡轴发动机发展趋势[J]. 航空动力学报,2019,34(12): 2577-2588. ZOU Wangzhi,ZHENG Xinqian. Development trends of aero turboshaft engines[J]. Journal of Aerospace Power,2019,34(12): 2577-2588. (in ChineseZOU Wangzhi, ZHENG Xinqian. Development trends of aero turboshaft engines[J]. Journal of Aerospace Power, 2019, 34(12): 2577-2588. (in Chinese) [2] 张少锋,陈玉春,李夏鑫,等. 基于涡轴发动机性能与尺寸重量的耦合评估方法[J]. 推进技术,2018,39(12): 2670-2678. ZHANG Shaofeng,CHEN Yuchun,LI Xiaxin,et al. A coupling assessment method based on turboshaft engine performance and size-weight[J]. Journal of Propulsion Technology,2018,39(12): 2670-2678. (in ChineseZHANG Shaofeng, CHEN Yuchun, LI Xiaxin, et al. A coupling assessment method based on turboshaft engine performance and size-weight[J]. Journal of Propulsion Technology, 2018, 39(12): 2670-2678. (in Chinese) [3] 李玲. 涡轴发动机转子连接螺栓的强度与蠕变寿命研究[D]. 南京: 南京航空航天大学,2009. LI Ling. Research on strength and creeplife of connecting bolts in turboshaft engine rotors[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2009. (in ChineseLI Ling. Research on strength and creeplife of connecting bolts in turboshaft engine rotors[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. (in Chinese) [4] 尹泽勇,欧园霞,胡柏安,等. 端齿连接及变轴力的影响[J]. 航空动力学报,1994,9(2): 20-23. YIN Zeyong,OU Yuanxia,HU Boan,et al. End-tooth connection and influence of variable axial force[J]. Journal of Aerospace Power,1994,9(2): 20-23. (in ChineseYIN Zeyong, OU Yuanxia, HU Boan, et al. End-tooth connection and influence of variable axial force[J]. Journal of Aerospace Power, 1994, 9(2): 20-23. (in Chinese) [5] 李玲,蔡安江,蔡力钢,等. 螺栓结合面微观接触模型[J]. 机械工程学报,2016,52(7): 205-212. LI Ling,CAI Anjiang,CAI Ligang,et al. Micro-contact model of bolted-joint interface[J]. Journal of Mechanical Engineering,2016,52(7): 205-212. (in Chinese doi: 10.3901/JME.2016.07.205LI Ling, CAI Anjiang, CAI Ligang, et al. Micro-contact model of bolted-joint interface[J]. Journal of Mechanical Engineering, 2016, 52(7): 205-212. (in Chinese) doi: 10.3901/JME.2016.07.205 [6] SUN Wei,LI Tao,YANG Dongjian,et al. Dynamic investigation of aeroengine high pressure rotor system considering assembly characteristics of bolted joints[J]. Engineering Failure Analysis,2020,112: 104510. doi: 10.1016/j.engfailanal.2020.104510 [7] 孟春晓,张文胜,马辉,等. 螺栓连接鼓筒转子结构动力学特性分析[J]. 振动工程学报,2019,32(3): 517-525. MENG Chunxiao,ZHANG Wensheng,MA Hui,et al. Analysis of dynamic characteristics of a bolted drum rotor structure[J]. Journal of Vibration Engineering,2019,32(3): 517-525. (in ChineseMENG Chunxiao, ZHANG Wensheng, MA Hui, et al. Analysis of dynamic characteristics of a bolted drum rotor structure[J]. Journal of Vibration Engineering, 2019, 32(3): 517-525. (in Chinese) [8] 李伦绪,陈果,于平超,等. 止口螺栓连接结构非线性刚度机理分析及数值仿真[J]. 航空动力学报,2021,36(2): 358-368. LI Lunxu,CHEN Guo,YU Pingchao,et al. Nonlinear stiffness mechanism analysis and numerical simulation of rabbet-bolted connection structure[J]. Journal of Aerospace Power,2021,36(2): 358-368. (in ChineseLI Lunxu, CHEN Guo, YU Pingchao, et al. Nonlinear stiffness mechanism analysis and numerical simulation of rabbet-bolted connection structure[J]. Journal of Aerospace Power, 2021, 36(2): 358-368. (in Chinese) [9] 马艳红,倪耀宇,陈雪骑,等. 长拉杆-止口连接弯曲刚度损失及对转子系统振动响应影响[J]. 航空学报,2021,42(3): 223861. MA Yanhong,NI Yaoyu,CHEN Xueqi,et al. Bending stiffness loss of rod-rabbet joints and its effect on vibration response of rotor systems[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 223861. (in ChineseMA Yanhong, NI Yaoyu, CHEN Xueqi, et al. Bending stiffness loss of rod-rabbet joints and its effect on vibration response of rotor systems[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 223861. (in Chinese) [10] 洪杰,徐翕如,苏志敏,等. 高速转子连接结构刚度损失及振动特性[J]. 北京航空航天大学学报,2019,45(1): 18-25. HONG Jie,XU Xiru,SU Zhimin,et al. Joint stiffness loss and vibration characteristics of high-speed rotor[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(1): 18-25. (in ChineseHONG Jie, XU Xiru, SU Zhimin, et al. Joint stiffness loss and vibration characteristics of high-speed rotor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 18-25. (in Chinese) [11] 尹泽勇,欧圆霞,李彦,等. 端齿轴段刚度及其对转子动力特性的影响[J]. 振动工程学报,1993,6(1): 63-67. YIN Zeyong,OU Yuanxia,LI Yan,et al. Stiffness of a shaft section with curvic couplings and its effect on dynamic characteristic of a rotor[J]. Journal of Vibration Engineering,1993,6(1): 63-67. (in ChineseYIN Zeyong, OU Yuanxia, LI Yan, et al. Stiffness of a shaft section with curvic couplings and its effect on dynamic characteristic of a rotor[J]. Journal of Vibration Engineering, 1993, 6(1): 63-67. (in Chinese) [12] 金淼,王艾伦,王青山,等. 考虑端齿预紧的新型中心拉杆-转子-叶片耦合系统动力学特性分析[J]. 机械工程学报,2021,57(23): 124-136. JIN Miao,WANG Ailun,WANG Qingshan,et al. Dynamic characteristics a analysis of a new type of central Tie rod rotor-blade-bearing coupling system considering the end-tooth connection structure[J]. Journal of Mechanical Engineering,2021,57(23): 124-136. (in Chinese doi: 10.3901/JME.2021.23.124JIN Miao, WANG Ailun, WANG Qingshan, et al. Dynamic characteristics a analysis of a new type of central Tie rod rotor-blade-bearing coupling system considering the end-tooth connection structure[J]. Journal of Mechanical Engineering, 2021, 57(23): 124-136. (in Chinese) doi: 10.3901/JME.2021.23.124 [13] 雷冰龙,李超,何康,等. 共用支承-转子系统耦合振动分析及试验[J]. 航空动力学报,2020,35(11): 2293-2305. LEI Binglong,LI Chao,HE Kang,et al. Coupling vibration characteristics analysis and experiment of shared support-rotors system[J]. Journal of Aerospace Power,2020,35(11): 2293-2305. (in ChineseLEI Binglong, LI Chao, HE Kang, et al. Coupling vibration characteristics analysis and experiment of shared support-rotors system[J]. Journal of Aerospace Power, 2020, 35(11): 2293-2305. (in Chinese) [14] 夏冶宝,任兴民,秦卫阳,等. 浮环挤压油膜阻尼器对模拟低压转子突加不平衡响应影响分析[J]. 航空动力学报,2015,30(11): 2771-2778. XIA Yebao,REN Xingmin,QIN Weiyang,et al. Analysis of the effect of floating ring squeeze film damper on sudden unbalance response of low pressure rotor[J]. Journal of Aerospace Power,2015,30(11): 2771-2778. (in ChineseXIA Yebao, REN Xingmin, QIN Weiyang, et al. Analysis of the effect of floating ring squeeze film damper on sudden unbalance response of low pressure rotor[J]. Journal of Aerospace Power, 2015, 30(11): 2771-2778. (in Chinese) [15] 邓旺群,吴施志,刘文魁,等. 带柔性静子结构高速转子支承刚度修正方法[J]. 振动与冲击,2020,39(7): 29-35,66. DENG Wangqun,WU Shizhi,LIU Wenkui,et al. Support stiffness modification method for a high-speed rotor with flexible stator[J]. Journal of Vibration and Shock,2020,39(7): 29-35,66. (in ChineseDENG Wangqun, WU Shizhi, LIU Wenkui, et al. Support stiffness modification method for a high-speed rotor with flexible stator[J]. Journal of Vibration and Shock, 2020, 39(7): 29-35, 66. (in Chinese) [16] 王龙凯,王艾伦,尹伊君等. 考虑支承约束的航空发动机复杂转子振动特性[J]. 航空动力学报,2023,38(4): 901-912. WANG Longkai,WANG Ailun,YIN Yijun,et al. Vibration characteristics of complex aero-engine rotors considering support constraints[J]. Journal of Aerospace Power,2023,38(4): 901-912. (in ChineseWANG Longkai, WANG Ailun, YIN Yijun, et al. Vibration characteristics of complex aero-engine rotors considering support constraints[J]. Journal of Aerospace Power, 2023, 38(4): 901-912. (in Chinese) [17] 王龙凯,王艾伦,尹伊君等. 航空涡轮轴发动机复杂转子的动力学建模方法[J]. 中国机械工程,2022,33(13): 1513-1520. WANG Longkai,WANG Ailun,YIN Yijun,et al. Dynamic modeling method to complex rotor for aero-turboshaft engines[J]. China mechanical engineering,2022,33(13): 1513-1520. (in ChineseWANG Longkai, WANG Ailun, YIN Yijun, et al. Dynamic modeling method to complex rotor for aero-turboshaft engines[J]. China mechanical engineering, 2022, 33(13): 1513-1520. (in Chinese) [18] 唐振寰,米栋,卢愈,等. 轴承共腔-双转子系统耦合振动特性研究[J]. 推进技术,2022,43(2): 246-255. TANG Zhenhuan,MI Dong,LU Yu,et al. Coupling vibration characteristics for shared bearing bore-coaxial rotor system[J]. Journal of Propulsion Technology,2022,43(2): 246-255. (in ChineseTANG Zhenhuan, MI Dong, LU Yu, et al. Coupling vibration characteristics for shared bearing bore-coaxial rotor system[J]. Journal of Propulsion Technology, 2022, 43(2): 246-255. (in Chinese) [19] JIN Miao,WANG Ailun,WANG Qingshan,et al. The vibration characteristics of central Tie rod rotor-blade-bearing coupling system considering the influence of the Hirth couplings[J]. Archive of Applied Mechanics,2022,92(12): 3533-3561. doi: 10.1007/s00419-022-02247-6 [20] 赵润超,焦映厚,曲秀全,等. 基于虚拟材料层燃机转子接触面建模方法[J]. 哈尔滨工业大学学报,2021,53(1): 117-123. ZHAO Runchao,JIAO Yinghou,QU Xiuquan,et al. Modeling method of gas turbine rotor contact surface based on virtual material layer[J]. Journal of Harbin Institute of Technology,2021,53(1): 117-123. (in ChineseZHAO Runchao, JIAO Yinghou, QU Xiuquan, et al. Modeling method of gas turbine rotor contact surface based on virtual material layer[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 117-123. (in Chinese) [21] 杨郑烈,王艾伦,张海彪,等. 考虑接触效应的端齿连接转子动力学特性研究[J]. 机械强度,2020,42(6): 1489-1495. YANG Zhenglie,WANG Ailun,ZHANG Haibiao,et al. Study on dynamic characteristics of end-toothed connection rotor considering contact effect[J]. Journal of Mechanical Strength,2020,42(6): 1489-1495. (in ChineseYANG Zhenglie, WANG Ailun, ZHANG Haibiao, et al. Study on dynamic characteristics of end-toothed connection rotor considering contact effect[J]. Journal of Mechanical Strength, 2020, 42(6): 1489-1495. (in Chinese) [22] MA Hui,LU Yang,WU Zhiyuan,et al. A new dynamic model of rotor–blade systems[J]. Journal of Sound and Vibration,2015,357: 168-194. doi: 10.1016/j.jsv.2015.07.036 [23] 杨克昌. 圆锥类刚体对任意轴的转动惯量计算公式[J]. 娄底师专学报,1988,5(4): 29-32. YANG Kechang. Calculation formula of moment of inertia of conical rigid body about arbitrary axis[J]. Journal of Loudi Teachers College,1988,5(4): 29-32. (in ChineseYANG Kechang. Calculation formula of moment of inertia of conical rigid body about arbitrary axis[J]. Journal of Loudi Teachers College, 1988, 5(4): 29-32. (in Chinese) [24] MA Hui,YIN Fanli,WU Zhiyuan,et al. Nonlinear vibration response analysis of a rotor-blade system with blade-tip rubbing[J]. Nonlinear Dynamics,2016,84(3): 1225-1258. doi: 10.1007/s11071-015-2564-5 [25] 吴志渊,闫寒,吴林潮,等. 旋转裂纹叶片-弹性轮盘耦合系统振动特性[J]. 航空学报,2022,43(9): 625442. WU Zhiyuan,YAN Han,WU Linchao,et al. Vibration characteristics of rotating cracked-blade-flexible-disk coupling system[J]. Acta Aeronautica et Astronautica Sinica,2022,43(9): 625442. (in ChineseWU Zhiyuan, YAN Han, WU Linchao, et al. Vibration characteristics of rotating cracked-blade-flexible-disk coupling system[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625442. (in Chinese) [26] 赵永武,吕彦明,蒋建忠. 新的粗糙表面弹塑性接触模型[J]. 机械工程学报,2007,43(3): 95-101. ZHAO Yongwu,LYU Yanming,JIANG Jianzhong. New elastic-plastic model for the contact of rough surfaces[J]. Chinese Journal of Mechanical Engineering,2007,43(3): 95-101. (in Chinese doi: 10.3901/JME.2007.03.095ZHAO Yongwu, LYU Yanming, JIANG Jianzhong. New elastic-plastic model for the contact of rough surfaces[J]. Chinese Journal of Mechanical Engineering, 2007, 43(3): 95-101. (in Chinese) doi: 10.3901/JME.2007.03.095 [27] ZHAO Yongwu,MAIETTA D M,CHANG L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology,2000,122(1): 86-93. doi: 10.1115/1.555332 [28] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第19册 转子动力学及整机振动[M]. 北京: 航空工业出版社,2001: 210-220. The Editorial Committee of Aviation Engine Design Handbook. Aviation Engine Design Handbook: Volume 19 rotor dynamics and engine vibration[M]. Beijing: Aviation Industry Press,2001: 210-220. (in ChineseThe Editorial Committee of Aviation Engine Design Handbook. Aviation Engine Design Handbook: Volume 19 rotor dynamics and engine vibration[M]. Beijing: Aviation Industry Press, 2001: 210-220. (in Chinese) [29] 缪辉,臧朝平,罗欣洋,等. 基于薄层单元的拉杆转子接触界面动力学建模及修正[J]. 航空动力学报,2019,34(9): 1927-1935. MIAO Hui,ZANG Chaoping,LUO Xinyang,et al. Dynamic modeling and updating for contact interface of rod fastening rotor based on thin-layer element[J]. Journal of Aerospace Power,2019,34(9): 1927-1935. (in ChineseMIAO Hui, ZANG Chaoping, LUO Xinyang, et al. Dynamic modeling and updating for contact interface of rod fastening rotor based on thin-layer element[J]. Journal of Aerospace Power, 2019, 34(9): 1927-1935. (in Chinese) -