留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空模型燃料与氢气掺混微尺度燃烧数值模拟

陈星赫 苏晟 王娟

陈星赫, 苏晟, 王娟. 航空模型燃料与氢气掺混微尺度燃烧数值模拟[J]. 航空动力学报, 2024, 39(10):20220769 doi: 10.13224/j.cnki.jasp.20220769
引用本文: 陈星赫, 苏晟, 王娟. 航空模型燃料与氢气掺混微尺度燃烧数值模拟[J]. 航空动力学报, 2024, 39(10):20220769 doi: 10.13224/j.cnki.jasp.20220769
CHEN Xinghe, SU Sheng, WANG Juan. Numerical simulation of micro-scale combustion characteristics of jet fuel surrogate/hydrogen mixtures[J]. Journal of Aerospace Power, 2024, 39(10):20220769 doi: 10.13224/j.cnki.jasp.20220769
Citation: CHEN Xinghe, SU Sheng, WANG Juan. Numerical simulation of micro-scale combustion characteristics of jet fuel surrogate/hydrogen mixtures[J]. Journal of Aerospace Power, 2024, 39(10):20220769 doi: 10.13224/j.cnki.jasp.20220769

航空模型燃料与氢气掺混微尺度燃烧数值模拟

doi: 10.13224/j.cnki.jasp.20220769
基金项目: 国家自然科学基金(U2032119)
详细信息
    作者简介:

    陈星赫(1998-),男,硕士生,主要从事微尺度燃烧研究

    通讯作者:

    王娟(1976-),教授,博士,研究方向为催化燃烧、微尺度燃烧与生物质转化。E-mail:juanwang@buaa.edu.cn

  • 中图分类号: V219

Numerical simulation of micro-scale combustion characteristics of jet fuel surrogate/hydrogen mixtures

  • 摘要:

    对二维三级后台阶微燃烧器中以3种碳氢化合物(69% C10H22、11% C9H18、20% C9H12)混合的Jet A-1模型燃料与氢气的掺混在纯氧中的燃烧进行了数值模拟,分析了燃料掺氢比、进气流速对微燃烧器内燃烧特性的影响。结果表明,所有火焰均可以稳定在微燃烧器第一后台阶(距离微燃烧器入口3 mm处)之前。随着掺氢比增加,火焰位置逐渐前移,火焰长度缩短,且微燃烧器内部的高温区面积减少,最高温度降低,上游燃烧强度更高但下游更低,CO和CH4质量分数减小,裂解反应的发生位置前移且裂解产物的质量分数降低。随着入口进气流速增加,燃烧反应的高温区扩大,火焰中心位置和火焰前沿向微燃烧器出口移动和拉伸,掺氢比对壁面温度的影响减小,微燃烧器中心线OH质量分数整体增加,CO2质量分数减小,CH4质量分数增加,且裂解反应的发生位置后移且产物质量分数增加。结果表明:低速下可以掺混少量氢气得到更高的壁温从而获取更多能量。低速可能影响燃烧区燃料燃烧时的化学反应,从而造成上游的OH生成量减小。掺氢比的增加以及流速的降低会使CO质量分数波动更加明显。CO2的质量分数最高时的掺氢比为25%。在高掺氢比和低进气流速下,乙炔大部分是靠燃料直接裂解生成,只有少量是通过丙烯的二次裂解生成。

     

  • 图 1  微燃烧器物理模型(单位:mm)

    Figure 1.  Physical model of micro burner (unit:mm)

    图 2  不同网格数微燃烧器中心线温度分布

    Figure 2.  Temperature distribution at micro burner centerline with different grid numbers

    图 3  不同工况下微燃烧器温度分布图

    Figure 3.  Micro burner temperature distribution under different working conditions

    图 4  同一进气流速不同掺氢比下微燃烧器外壁面温度

    Figure 4.  Outer wall temperature of micro burner at the same inlet gas flow rate and different hydrogen mixing ratios

    图 5  同一掺氢比不同进气流速下微燃烧器外壁面温度

    Figure 5.  Outer wall temperature of micro burner under the same hydrogen mixing ratio and different inlet gas flow rates

    图 6  同一掺氢比不同进气流速下微燃烧器中心线OH质量分数分布

    Figure 6.  OH mass fraction distribution of micro burner centerline under the same hydrogen mixing ratio and different inlet flow rates

    图 7  同一掺氢比不同进气流速下微燃烧器中心线CO质量分数分布

    Figure 7.  CO mass fraction distribution at micro burner centerline under the same hydrogen mixing ratio and different inlet gas flow rates

    图 8  同一掺氢比不同进气流速下下微燃烧器中心线CO2质量分数分布

    Figure 8.  CO2 mass fraction distribution at micro burner centerline under the same hydrogen mixing ratio and different inlet gas flow rates

    图 9  同一进气流速不同掺氢比下微燃烧器中心线CO2质量分数分布

    Figure 9.  CO2 mass fraction distribution at micro burner centerline at the same inlet gas flow rate and different hydrogen mixing ratios

    图 10  不同工况下微燃烧器中心线裂解产物质量分数分布

    Figure 10.  Mass fraction distribution of pyrolysis products on centerline of micro burner under different working conditions

    表  1  各工况下的掺氢比及进气流速

    Table  1.   Hydrogen mixing ratio and inlet gas flow rate under various working conditions

    工况 φ/% v/(m/s)
    Case 1 0 5
    Case 2 0 7
    Case 3 0 10
    Case 4 25 5
    Case 5 25 7
    Case 6 25 10
    Case 7 50 5
    Case 8 50 7
    Case 9 50 10
    Case 10 75 5
    Case 11 75 7
    Case 12 75 10
    Case 13 100 5
    Case 14 100 7
    Case 15 100 10
    下载: 导出CSV
  • [1] CHIA L C,FENG Bo. The development of a micropower (micro-thermophotovoltaic) device[J]. Journal of Power Sources,2007,165(1): 455-480. doi: 10.1016/j.jpowsour.2006.12.006
    [2] MILCAREK R J,NAKAMURA H,TEZUKA T,et al. Microcombustion for micro-tubular flame-assisted fuel cell power and heat cogeneration[J]. Journal of Power Sources,2019,413: 191-197. doi: 10.1016/j.jpowsour.2018.12.043
    [3] BIEBERLE-HÜTTER A,BECKEL D,INFORTUNA A,et al. A micro-solid oxide fuel cell system as battery replacement[J]. Journal of Power Sources,2008,177(1): 123-130. doi: 10.1016/j.jpowsour.2007.10.092
    [4] KAISARE N S,VLACHOS D G. A review on microcombustion: Fundamentals,devices and applications[J]. Progress in Energy and Combustion Science,2012,38(3): 321-359. doi: 10.1016/j.pecs.2012.01.001
    [5] MARUTA K,TAKEDA K,AHN J,et al. Extinction limits of catalytic combustion in microchannels[J]. Proceedings of the Combustion Institute,2002,29(1): 957-963. doi: 10.1016/S1540-7489(02)80121-3
    [6] KAISARE N S,DESHMUKH S R,VLACHOS D G. Stability and performance of catalytic microreactors: Simulations of propane catalytic combustion on Pt[J]. Chemical Engineering Science,2008,63(4): 1098-1116. doi: 10.1016/j.ces.2007.11.014
    [7] PAN Jianfeng,ZHANG Rui,LU Qingbo,et al. Experimental study on premixed methane-air catalytic combustion in rectangular micro channel[J]. Applied Thermal Engineering,2017,117: 1-7. doi: 10.1016/j.applthermaleng.2017.02.008
    [8] NORTON D G,VLACHOS D G. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures[J]. Chemical Engineering Science,2003,58(21): 4871-4882. doi: 10.1016/j.ces.2002.12.005
    [9] KANG Xin,VEERARAGAVAN A. Experimental investigation of flame stability limits of a mesoscale combustor with thermally orthotropic walls[J]. Applied Thermal Engineering,2015,85: 234-242. doi: 10.1016/j.applthermaleng.2015.04.017
    [10] ZUO Wei,JIAQIANG E,HAN Dandan,et al. Numerical investigations on thermal performance of double-layer four-channel micro combustors for micro-thermophotovoltaic system[J]. Energy Conversion and Management,2017,150: 343-355. doi: 10.1016/j.enconman.2017.08.029
    [11] SU Yang,CHENG Qiang,SONG Jinlin,et al. Numerical study on a multiple-channel micro combustor for a micro-thermophotovoltaic system[J]. Energy Conversion and Management,2016,120: 197-205. doi: 10.1016/j.enconman.2016.04.088
    [12] KIM N,KATO S,KATAOKA T,et al. Flame stabilization and emission of small Swiss-roll combustors as heaters[J]. Combustion and Flame,2005,141(3): 229-240. doi: 10.1016/j.combustflame.2005.01.006
    [13] WIERZBICKI T A,LEE I C,GUPTA A K. Combustion of propane with Pt and Rh catalysts in a meso-scale heat recirculating combustor[J]. Applied Energy,2014,130: 350-356. doi: 10.1016/j.apenergy.2014.05.069
    [14] VIJAYAN V,GUPTA A K. Combustion and heat transfer at meso-scale with thermal recuperation[J]. Applied Energy,2010,87(8): 2628-2639. doi: 10.1016/j.apenergy.2010.03.011
    [15] FEDERICI J A,VLACHOS D G. A computational fluid dynamics study of propane/air microflame stability in a heat recirculation reactor[J]. Combustion and Flame,2008,153(1/2): 258-269.
    [16] TANG Aikun,DENG Jiang,CAI Tao,et al. Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights[J]. Applied Energy,2017,203: 635-642. doi: 10.1016/j.apenergy.2017.05.187
    [17] PENG Qingguo,WEI Jia,YANG Wenming,et al. Study on combustion characteristic of premixed H2/C3H8/air and working performance in the micro combustor with block[J]. Fuel,2022,318: 123676. doi: 10.1016/j.fuel.2022.123676
    [18] 任慧敏,潘剑锋,卢青波,等. 微通道内甲烷/氢气/氧气预混合火焰传播特性[J]. 燃烧科学与技术,2019,25(3): 213-219. REN Huimin,PAN Jianfeng,LU Qingbo,et al. Characteristics of premixed methane/hydrogen/oxygen flame propagation in microchannel[J]. Journal of Combustion Science and Technology,2019,25(3): 213-219. (in Chinese

    REN Huimin, PAN Jianfeng, LU Qingbo, et al. Characteristics of premixed methane/hydrogen/oxygen flame propagation in microchannel[J]. Journal of Combustion Science and Technology, 2019, 25(3): 213-219. (in Chinese)
    [19] 周明月,杨卫娟,邓尘,等. 微型圆管内氢气/甲烷/空气催化燃烧实验[J]. 浙江大学学报(工学版),2015(12): 2276-2281. ZHOU Mingyue,YANG Weijuan,DENG Chen,et al. Experiments on hydrogen/methane/air catalytic combustion in micro tube[J]. Journal of Zhejiang University (Engineering Science),2015(12): 2276-2281. (in Chinese

    ZHOU Mingyue, YANG Weijuan, DENG Chen, et al. Experiments on hydrogen/methane/air catalytic combustion in micro tube[J]. Journal of Zhejiang University (Engineering Science), 2015(12): 2276-2281. (in Chinese)
    [20] 苏航,霍杰鹏,汪小憨,等. 掺氢对微尺度空间内预混层流火焰转捩爆燃特性的影响[J]. 燃烧科学与技术,2021,27(1): 23-28. SU Hang,HUO Jiepeng,WANG Xiaohan,et al. Effects of hydrogen blending ratio on the characteristics of deflagration transition for laminar premixed flame in a micro-scale space[J]. Journal of Combustion Science and Technology,2021,27(1): 23-28. (in Chinese

    SU Hang, HUO Jiepeng, WANG Xiaohan, et al. Effects of hydrogen blending ratio on the characteristics of deflagration transition for laminar premixed flame in a micro-scale space[J]. Journal of Combustion Science and Technology, 2021, 27(1): 23-28. (in Chinese)
    [21] YAN Yunfei,PAN Wenli,ZHANG Li,et al. Numerical study on combustion characteristics of hydrogen addition into methane-air mixture[J]. International Journal of Hydrogen Energy,2013,38(30): 13463-13470. doi: 10.1016/j.ijhydene.2013.07.114
    [22] WIERZBICKI T A,LEE I C,GUPTA A K. Performance of synthetic jet fuels in a meso-scale heat recirculating combustor[J]. Applied Energy,2014,118: 41-47. doi: 10.1016/j.apenergy.2013.12.021
    [23] TAN Yan,JIAQIANG E,CHEN Jingwei,et al. Investigation on combustion characteristics and thermal performance of a three rearward-step structure micro combustor fueled by premixed hydrogen/air[J]. Renewable Energy,2022,186: 486-504. doi: 10.1016/j.renene.2022.01.019
    [24] SAFFARIPOUR M,VESHKINI A,KHOLGHY M,et al. Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1,a synthetic kerosene,and n-decane[J]. Combustion and Flame,2014,161(3): 848-863. doi: 10.1016/j.combustflame.2013.10.016
    [25] DAGAUT P,KARSENTY F,DAYMA G,et al. Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel[J]. Combustion and Flame,2014,161(3): 835-847. doi: 10.1016/j.combustflame.2013.08.015
    [26] SLAVINSKAYA N A,Riedel U,Dworkin S B,et al. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames[J]. Combustion and Flame,2012,159(3): 979-995. doi: 10.1016/j.combustflame.2011.10.005
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  158
  • HTML浏览量:  33
  • PDF量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-06
  • 网络出版日期:  2024-03-14

目录

    /

    返回文章
    返回