Numerical simulation of micro-scale combustion characteristics of jet fuel surrogate/hydrogen mixtures
-
摘要:
对二维三级后台阶微燃烧器中以3种碳氢化合物(69% C10H22、11% C9H18、20% C9H12)混合的Jet A-1模型燃料与氢气的掺混在纯氧中的燃烧进行了数值模拟,分析了燃料掺氢比、进气流速对微燃烧器内燃烧特性的影响。结果表明,所有火焰均可以稳定在微燃烧器第一后台阶(距离微燃烧器入口3 mm处)之前。随着掺氢比增加,火焰位置逐渐前移,火焰长度缩短,且微燃烧器内部的高温区面积减少,最高温度降低,上游燃烧强度更高但下游更低,CO和CH4质量分数减小,裂解反应的发生位置前移且裂解产物的质量分数降低。随着入口进气流速增加,燃烧反应的高温区扩大,火焰中心位置和火焰前沿向微燃烧器出口移动和拉伸,掺氢比对壁面温度的影响减小,微燃烧器中心线OH质量分数整体增加,CO2质量分数减小,CH4质量分数增加,且裂解反应的发生位置后移且产物质量分数增加。结果表明:低速下可以掺混少量氢气得到更高的壁温从而获取更多能量。低速可能影响燃烧区燃料燃烧时的化学反应,从而造成上游的OH生成量减小。掺氢比的增加以及流速的降低会使CO质量分数波动更加明显。CO2的质量分数最高时的掺氢比为25%。在高掺氢比和低进气流速下,乙炔大部分是靠燃料直接裂解生成,只有少量是通过丙烯的二次裂解生成。
Abstract:Abstract: The combustion of a Jet A-1 surrogate (69% C10H22, 11% C9H18 and 20% C9H12) and hydrogen in pure oxygen was simulated in a two-dimensional three-step back stage micro-scale combustor. The effects of hydrogen mixing ratio and inlet gas flow rate on the combustion characteristics in the combustor were analyzed. The results showed that all the flames can be stabilized before the first stage of the micro burner (3 mm away from the micro burner inlet). With the increase of hydrogen mixing ratio, the flame position gradually moved towards the micro burner inlet, the flame length was shortened, and the high-temperature area inside the micro burner reduced, the maximum temperature decreased, the upstream combustion intensity was higher but the downstream combustion intensity was lower, the mass fractions of CO and CH4 decreased, the fuel cracking occurred closer to the micro burner inlet and the mass fractions of the cracking products decreased. With the increase of inlet gas flow rate, the high temperature zone of combustion reaction expanded, the flame center position and flame front moved and stretched towards the micro burner outlet, the influence of hydrogen mixing ratio on the wall temperature decreased, the OH mass fraction along the micro burner centerline increased, the CO2 mass fraction decreased, the CH4 mass fraction increased, and the cracking reactions occurred closer to the micro burner outlet and the mass fractions of the products increased. These results indicated that at low inlet gas flow rate, mixing a small amount of hydrogen can obtain high wall temperature and high energy. Low inlet gas flow rate may affect the chemical reaction in the combustion zone and reduce the amount of OH generated upstream. The increase of hydrogen mixing ratio and the decrease of flow rate can cause more obvious fluctuation of CO mass fraction. The hydrogen mixing ratio was 25% when the CO2 mass fraction reached the highest amount. At high hydrogen mixing ratio and low inlet gas flow rate, acetylene was mostly generated by direct cracking of the fuel, and only a small amount was generated by secondary cracking of propylene.-
Key words:
- micro-scale combustion /
- hydrogen mixing ratio /
- combustion characteristics /
- flame position /
- cracking
-
表 1 各工况下的掺氢比及进气流速
Table 1. Hydrogen mixing ratio and inlet gas flow rate under various working conditions
工况 φ/% v/(m/s) Case 1 0 5 Case 2 0 7 Case 3 0 10 Case 4 25 5 Case 5 25 7 Case 6 25 10 Case 7 50 5 Case 8 50 7 Case 9 50 10 Case 10 75 5 Case 11 75 7 Case 12 75 10 Case 13 100 5 Case 14 100 7 Case 15 100 10 -
[1] CHIA L C,FENG Bo. The development of a micropower (micro-thermophotovoltaic) device[J]. Journal of Power Sources,2007,165(1): 455-480. doi: 10.1016/j.jpowsour.2006.12.006 [2] MILCAREK R J,NAKAMURA H,TEZUKA T,et al. Microcombustion for micro-tubular flame-assisted fuel cell power and heat cogeneration[J]. Journal of Power Sources,2019,413: 191-197. doi: 10.1016/j.jpowsour.2018.12.043 [3] BIEBERLE-HÜTTER A,BECKEL D,INFORTUNA A,et al. A micro-solid oxide fuel cell system as battery replacement[J]. Journal of Power Sources,2008,177(1): 123-130. doi: 10.1016/j.jpowsour.2007.10.092 [4] KAISARE N S,VLACHOS D G. A review on microcombustion: Fundamentals,devices and applications[J]. Progress in Energy and Combustion Science,2012,38(3): 321-359. doi: 10.1016/j.pecs.2012.01.001 [5] MARUTA K,TAKEDA K,AHN J,et al. Extinction limits of catalytic combustion in microchannels[J]. Proceedings of the Combustion Institute,2002,29(1): 957-963. doi: 10.1016/S1540-7489(02)80121-3 [6] KAISARE N S,DESHMUKH S R,VLACHOS D G. Stability and performance of catalytic microreactors: Simulations of propane catalytic combustion on Pt[J]. Chemical Engineering Science,2008,63(4): 1098-1116. doi: 10.1016/j.ces.2007.11.014 [7] PAN Jianfeng,ZHANG Rui,LU Qingbo,et al. Experimental study on premixed methane-air catalytic combustion in rectangular micro channel[J]. Applied Thermal Engineering,2017,117: 1-7. doi: 10.1016/j.applthermaleng.2017.02.008 [8] NORTON D G,VLACHOS D G. Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures[J]. Chemical Engineering Science,2003,58(21): 4871-4882. doi: 10.1016/j.ces.2002.12.005 [9] KANG Xin,VEERARAGAVAN A. Experimental investigation of flame stability limits of a mesoscale combustor with thermally orthotropic walls[J]. Applied Thermal Engineering,2015,85: 234-242. doi: 10.1016/j.applthermaleng.2015.04.017 [10] ZUO Wei,JIAQIANG E,HAN Dandan,et al. Numerical investigations on thermal performance of double-layer four-channel micro combustors for micro-thermophotovoltaic system[J]. Energy Conversion and Management,2017,150: 343-355. doi: 10.1016/j.enconman.2017.08.029 [11] SU Yang,CHENG Qiang,SONG Jinlin,et al. Numerical study on a multiple-channel micro combustor for a micro-thermophotovoltaic system[J]. Energy Conversion and Management,2016,120: 197-205. doi: 10.1016/j.enconman.2016.04.088 [12] KIM N,KATO S,KATAOKA T,et al. Flame stabilization and emission of small Swiss-roll combustors as heaters[J]. Combustion and Flame,2005,141(3): 229-240. doi: 10.1016/j.combustflame.2005.01.006 [13] WIERZBICKI T A,LEE I C,GUPTA A K. Combustion of propane with Pt and Rh catalysts in a meso-scale heat recirculating combustor[J]. Applied Energy,2014,130: 350-356. doi: 10.1016/j.apenergy.2014.05.069 [14] VIJAYAN V,GUPTA A K. Combustion and heat transfer at meso-scale with thermal recuperation[J]. Applied Energy,2010,87(8): 2628-2639. doi: 10.1016/j.apenergy.2010.03.011 [15] FEDERICI J A,VLACHOS D G. A computational fluid dynamics study of propane/air microflame stability in a heat recirculation reactor[J]. Combustion and Flame,2008,153(1/2): 258-269. [16] TANG Aikun,DENG Jiang,CAI Tao,et al. Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights[J]. Applied Energy,2017,203: 635-642. doi: 10.1016/j.apenergy.2017.05.187 [17] PENG Qingguo,WEI Jia,YANG Wenming,et al. Study on combustion characteristic of premixed H2/C3H8/air and working performance in the micro combustor with block[J]. Fuel,2022,318: 123676. doi: 10.1016/j.fuel.2022.123676 [18] 任慧敏,潘剑锋,卢青波,等. 微通道内甲烷/氢气/氧气预混合火焰传播特性[J]. 燃烧科学与技术,2019,25(3): 213-219. REN Huimin,PAN Jianfeng,LU Qingbo,et al. Characteristics of premixed methane/hydrogen/oxygen flame propagation in microchannel[J]. Journal of Combustion Science and Technology,2019,25(3): 213-219. (in ChineseREN Huimin, PAN Jianfeng, LU Qingbo, et al. Characteristics of premixed methane/hydrogen/oxygen flame propagation in microchannel[J]. Journal of Combustion Science and Technology, 2019, 25(3): 213-219. (in Chinese) [19] 周明月,杨卫娟,邓尘,等. 微型圆管内氢气/甲烷/空气催化燃烧实验[J]. 浙江大学学报(工学版),2015(12): 2276-2281. ZHOU Mingyue,YANG Weijuan,DENG Chen,et al. Experiments on hydrogen/methane/air catalytic combustion in micro tube[J]. Journal of Zhejiang University (Engineering Science),2015(12): 2276-2281. (in ChineseZHOU Mingyue, YANG Weijuan, DENG Chen, et al. Experiments on hydrogen/methane/air catalytic combustion in micro tube[J]. Journal of Zhejiang University (Engineering Science), 2015(12): 2276-2281. (in Chinese) [20] 苏航,霍杰鹏,汪小憨,等. 掺氢对微尺度空间内预混层流火焰转捩爆燃特性的影响[J]. 燃烧科学与技术,2021,27(1): 23-28. SU Hang,HUO Jiepeng,WANG Xiaohan,et al. Effects of hydrogen blending ratio on the characteristics of deflagration transition for laminar premixed flame in a micro-scale space[J]. Journal of Combustion Science and Technology,2021,27(1): 23-28. (in ChineseSU Hang, HUO Jiepeng, WANG Xiaohan, et al. Effects of hydrogen blending ratio on the characteristics of deflagration transition for laminar premixed flame in a micro-scale space[J]. Journal of Combustion Science and Technology, 2021, 27(1): 23-28. (in Chinese) [21] YAN Yunfei,PAN Wenli,ZHANG Li,et al. Numerical study on combustion characteristics of hydrogen addition into methane-air mixture[J]. International Journal of Hydrogen Energy,2013,38(30): 13463-13470. doi: 10.1016/j.ijhydene.2013.07.114 [22] WIERZBICKI T A,LEE I C,GUPTA A K. Performance of synthetic jet fuels in a meso-scale heat recirculating combustor[J]. Applied Energy,2014,118: 41-47. doi: 10.1016/j.apenergy.2013.12.021 [23] TAN Yan,JIAQIANG E,CHEN Jingwei,et al. Investigation on combustion characteristics and thermal performance of a three rearward-step structure micro combustor fueled by premixed hydrogen/air[J]. Renewable Energy,2022,186: 486-504. doi: 10.1016/j.renene.2022.01.019 [24] SAFFARIPOUR M,VESHKINI A,KHOLGHY M,et al. Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1,a synthetic kerosene,and n-decane[J]. Combustion and Flame,2014,161(3): 848-863. doi: 10.1016/j.combustflame.2013.10.016 [25] DAGAUT P,KARSENTY F,DAYMA G,et al. Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel[J]. Combustion and Flame,2014,161(3): 835-847. doi: 10.1016/j.combustflame.2013.08.015 [26] SLAVINSKAYA N A,Riedel U,Dworkin S B,et al. Detailed numerical modeling of PAH formation and growth in non-premixed ethylene and ethane flames[J]. Combustion and Flame,2012,159(3): 979-995. doi: 10.1016/j.combustflame.2011.10.005 -