留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抑扰型刷式密封刷丝浮升效应流固耦合数值分析

孙基生 孙丹 赵欢 慕伟 任国哲 徐文峰

孙基生, 孙丹, 赵欢, 等. 抑扰型刷式密封刷丝浮升效应流固耦合数值分析[J]. 航空动力学报, 2024, 39(10):20220770 doi: 10.13224/j.cnki.jasp.20220770
引用本文: 孙基生, 孙丹, 赵欢, 等. 抑扰型刷式密封刷丝浮升效应流固耦合数值分析[J]. 航空动力学报, 2024, 39(10):20220770 doi: 10.13224/j.cnki.jasp.20220770
SUN Jisheng, SUN Dan, ZHAO Huan, et al. Numerical investigation on bristles buoyancy effect of suppressed-disturbance brush seals with fluid-structure interaction[J]. Journal of Aerospace Power, 2024, 39(10):20220770 doi: 10.13224/j.cnki.jasp.20220770
Citation: SUN Jisheng, SUN Dan, ZHAO Huan, et al. Numerical investigation on bristles buoyancy effect of suppressed-disturbance brush seals with fluid-structure interaction[J]. Journal of Aerospace Power, 2024, 39(10):20220770 doi: 10.13224/j.cnki.jasp.20220770

抑扰型刷式密封刷丝浮升效应流固耦合数值分析

doi: 10.13224/j.cnki.jasp.20220770
基金项目: 国家自然科学基金(52075346); 先进航空动力创新工作站(依托中国航空发动机研究院设立)项目(HKC2020-02-030); 辽宁省教育厅基础研究项目资助项目(JYT2020047)
详细信息
    作者简介:

    孙基生(1999-),男,硕士生,主要从事刷式密封多物理场耦合性能分析技术方面的研究

    通讯作者:

    孙丹(1981-),男,教授,博士,主要从事透平机械先进密封技术研究。E-mail:phd_sundan@163.com

  • 中图分类号: V233.5

Numerical investigation on bristles buoyancy effect of suppressed-disturbance brush seals with fluid-structure interaction

  • 摘要:

    提出抑扰型刷式密封结构,基于arbitrary Lagrange-Eulerian(ALE)流固耦合方法建立抑扰型刷式密封刷丝浮升效应三维瞬态求解模型,研究不同抑扰孔结构刷式密封泄漏特性和速度特性,以及抑扰孔结构参数对刷式密封刷丝浮升效应的影响规律。研究结果表明:在传统刷式密封前挡板设置抑扰孔可改变前排刷丝受力状态,前排刷丝受到与扰动方向相反的力矩,有效抑制刷丝浮升效应产生,显著提升传统刷式密封封严性能。相较于易产生刷丝浮升效应的传统刷式密封,降低抑扰孔高度、增加抑扰孔直径和排数,均可有效降低刷式密封泄漏量,其中增加抑扰孔排数至3排可降低30.2%泄漏量。设置抑扰孔结构可抑制刷丝浮升效应引起的前排刷丝形变,相比于传统刷式密封,抑扰孔高度设置为3.75 mm、抑扰孔直径设置为1.5 mm与抑扰孔排数设置为3排,分别使刷丝自由端平均变形量减少53.2%、34.8%和54.0%。

     

  • 图 1  刷式密封ALE流固耦合方法

    Figure 1.  ALE fluid-structure interaction of brush seal

    图 2  抑扰型刷式密封剖面图

    Figure 2.  Profile of SD brush seals

    图 3  抑扰型刷式密封扇形段三维结构图

    Figure 3.  Three dimensional structure diagram of sector of SD brush seals

    图 4  数值计算模型

    Figure 4.  Numerical calculation model

    图 5  网格划分图

    Figure 5.  Mesh diagram

    图 6  边界条件

    Figure 6.  Boundary conditions

    图 7  不同抑扰孔结构刷式密封泄漏量随压比变化曲线

    Figure 7.  Leakage curve of brush seals with different SD holes structures varies with pressure ratio

    图 8  传统型与抑扰型刷式密封流场速度云图

    Figure 8.  Velocity contours of flow field of traditional and SD brush seals

    图 9  传统型刷式密封刷丝自由端不同时刻总体变形量

    Figure 9.  Total deformation of bristle tips of traditional brush seals at different times

    图 10  不同抑扰孔高度下刷丝自由端不同时刻总体变形量

    Figure 10.  Total deformation of bristle tips at different times with different SD holes heights

    图 11  不同抑扰孔高度下刷丝自由端平均变形量

    Figure 11.  Average deformation of bristle tips with different SD holes heights

    图 12  不同抑扰孔直径下刷丝自由端不同时刻总体变形量

    Figure 12.  Total deformation of bristle tips at different times with different SD hole diameters

    图 13  不同抑扰孔直径下刷丝自由端平均变形量

    Figure 13.  Average deformation of bristle tips with different SD hole diameters

    图 14  不同抑扰孔排数下刷丝自由端不同时刻总体变形量

    Figure 14.  Total deformation of bristle tips at different times with different SD holes rows

    图 15  不同抑扰孔排数下刷丝自由端平均变形量

    Figure 15.  Average deformation of bristle tips with different SD holes rows

    表  1  抑扰型刷式密封结构参数

    Table  1.   Structural parameters of SD brush seals mm

    参数 数值
    前挡板宽度wf 1.0
    后挡板宽度wb 2.0
    刷丝束轴向厚度ws 1.5
    前挡板保护高度hf 1.5
    后挡板保护高度hb 1.0
    刷丝束与转子面间隙hg 0
    刷丝束与前挡板间隙wg 0.8
    刷丝直径D 0.07
    刷丝排列间距d 0.007
    刷丝径向长度L 10.4
    抑扰孔直径Ds 0.5,1.0,1.5
    抑扰孔高度hs 3.75,5.95,8.15
    抑扰孔周向间距δ Ds/2
    下载: 导出CSV

    表  2  网格无关性验证

    Table  2.   Grid independence verification

    网格数量/万泄漏量相对误差/%
    8216.43
    1349.26
    1934.14
    2430.42
    下载: 导出CSV
  • [1] 李军,李志刚,张元桥,等. 刷式密封技术的研究进展[J]. 航空发动机,2019,45(2): 74-84. LI Jun,LI Zhigang,ZHANG Yuanqiao,et al. Research progress of brush seal technology[J]. Aeroengine,2019,45(2): 74-84. (in Chinese

    LI Jun, LI Zhigang, ZHANG Yuanqiao, et al. Research progress of brush seal technology[J]. Aeroengine, 2019, 45(2): 74-84. (in Chinese)
    [2] BAYLEY F J,LONG C A. A combined experimental and theoretical study of flow and pressure distributions in a brush seal[J]. Journal of Engineering for Gas Turbines and Power,1993,115(2): 404-410. doi: 10.1115/1.2906723
    [3] DINC S,DEMIROGLU M,TURNQUIST N,et al. Fundamental design issues of brush seals for industrial applications[J]. Journal of Turbomachinery,2002,124(2): 293-300. doi: 10.1115/1.1451847
    [4] MILLENER P J,EDMUNDS T M. Brush seal with porous upstream side-plate: US5496045[P]. 1996-05-05.
    [5] DOGU Y,AKSIT M F. Effects of geometry on brush seal pressure and flow fields: Part I: front plate configurations[J]. Journal of Turbomachinery,2006,128(2): 367-378. doi: 10.1115/1.2101857
    [6] 邱波,李军. 刷式密封流动与换热及力学特性的研究进展[J]. 热力透平,2013,42(3): 141-149. QIU Bo,LI Jun. A review of flow and heat transfer,mechanical characteristics of brush seals[J]. Thermal Turbine,2013,42(3): 141-149. (in Chinese

    QIU Bo, LI Jun. A review of flow and heat transfer, mechanical characteristics of brush seals[J]. Thermal Turbine, 2013, 42(3): 141-149. (in Chinese)
    [7] MODI V. Modeling bristle lift-off in idealized brush seal configurations[R]. AMSE 1994-GT-71,1994.
    [8] BASU P,DATTA A,LOEWENTHAL R,et al. Hysteresis and bristle stiffening effects in brush seals[J]. Journal of Propulsion and Power,1994,10(4): 569-575. doi: 10.2514/3.23810
    [9] BERARD G,SHORT J. Influence of design features on brush seal performance[R]. AIAA1999-2685,1999.
    [10] SHORT J,BASU P,DATTA A,et al. Advanced brush seal development[R]. AIAA1996-2907,1996.
    [11] CRUDGINGTON P,BOWSHER A,WALIA J,et al. Bristle angle effects on brush seal contact pressures[R]. AIAA2009-5168,2009.
    [12] AKSOY S,AKSIT M. Evaluation of pressure-stiffness coupling in brush seals[R]. AIAA2010-6831,2010.
    [13] ZHAO Haifang,STANGO R J. Analytical approach for investigating bristle/backplate hysteresis phenomenon in brush seals[J]. Journal of Propulsion and Power,2007,23(2): 273-282. doi: 10.2514/1.20682
    [14] MORRISON M K,WITHERS P A,JONES T V,et al. Brush seal: US5799952[P]. 1998-09-01.
    [15] REGGENTIN P,FRIEDRICHS J. Investigation of brush seal instabilities[R]. AIAA2020-3514,2020.
    [16] O'NEILL A T,HOGG S I,WITHERS P A,et al. Multiple brush seals in series[R] ASME 97-GT-194,1997.
    [17] 邱波,李军,丰镇平. 考虑刷丝变形的刷式密封摩擦热效应研究[J]. 工程热物理学报,2013,34(11): 2030-2034. QIU Bo,LI Jun,FENG Zhenping. Investigations on frictional heat generation of brush seals with consideration of bristle deflections[J]. Journal of Engineering Thermophysics,2013,34(11): 2030-2034. (in Chinese

    QIU Bo, LI Jun, FENG Zhenping. Investigations on frictional heat generation of brush seals with consideration of bristle deflections[J]. Journal of Engineering Thermophysics, 2013, 34(11): 2030-2034. (in Chinese)
    [18] 李朋飞,胡娅萍,吉洪湖. 低滞后刷式密封泄漏特性与滞后效应研究[J]. 润滑与密封,2020,45(10): 52-58. LI Pengfei,HU Yaping,JI Honghu. Investigation on leakage characteristics and hysteresis effect of low hysteresis brush seals[J]. Lubrication Engineering,2020,45(10): 52-58. (in Chinese

    LI Pengfei, HU Yaping, JI Honghu. Investigation on leakage characteristics and hysteresis effect of low hysteresis brush seals[J]. Lubrication Engineering, 2020, 45(10): 52-58. (in Chinese)
    [19] 孙丹,李国勤,艾延廷,等. 基于三维实体建模的刷式密封传热机理数值研究[J]. 航空动力学报,2019,34(8): 1633-1643. SUN Dan,LI Guoqin,AI Yanting,et al. Numerical study on heat transfer mechanism of brush seal based on three-dimensional solid modeling[J]. Journal of Aerospace Power,2019,34(8): 1633-1643. (in Chinese

    SUN Dan, LI Guoqin, AI Yanting, et al. Numerical study on heat transfer mechanism of brush seal based on three-dimensional solid modeling[J]. Journal of Aerospace Power, 2019, 34(8): 1633-1643. (in Chinese)
    [20] 杜宸宇,孙丹,刘永泉,等. 刷式密封吹下效应诱发机理流固耦合数值研究[J]. 航空动力学报,2021,36(2): 310-319. DU Chenyu,SUN Dan,LIU Yongquan,et al. Numerical investigation on induced mechanism of blow-down effect of brush seals with fluid-structure interaction[J]. Journal of Aerospace Power,2021,36(2): 310-319. (in Chinese

    DU Chenyu, SUN Dan, LIU Yongquan, et al. Numerical investigation on induced mechanism of blow-down effect of brush seals with fluid-structure interaction[J]. Journal of Aerospace Power, 2021, 36(2): 310-319. (in Chinese)
    [21] 孙丹,杜宸宇,刘永泉,等. 基于ALE流固耦合方法的刷式密封刷丝接触变形特性理论与试验研究[J]. 机械工程学报,2020,56(9): 170-180. SUN Dan,DU Chenyu,LIU Yongquan,et al. Theoretical and experimental investigation on the bristle contact deflections characteristics of brush seals based on ALE fluid-structure interaction method[J]. Journal of Mechanical Engineering,2020,56(9): 170-180. (in Chinese doi: 10.3901/JME.2020.09.170

    SUN Dan, DU Chenyu, LIU Yongquan, et al. Theoretical and experimental investigation on the bristle contact deflections characteristics of brush seals based on ALE fluid-structure interaction method[J]. Journal of Mechanical Engineering, 2020, 56(9): 170-180. (in Chinese) doi: 10.3901/JME.2020.09.170
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  41
  • HTML浏览量:  34
  • PDF量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-07
  • 网络出版日期:  2024-03-14

目录

    /

    返回文章
    返回