Research status and prospect of aircraft heat pipe anti-icing technology
-
摘要:
为深入认识和发展热管防冰技术,重点论述了不同类型热管在飞机防冰领域上的研究现状,总结了环路热管、旋转热管和重力热管在飞机机翼和发动机前端部件防冰上的理论和实验研究成果,梳理了防冰用环路热管和旋转热管的主要特点,并对热管防冰技术的发展方向进行了展望。结果表明:热管防冰技术的研究仍处于起步阶段,大多停留在热管防冰系统设计及其可行性验证;提出后续研究应以实验为主,采用数值计算和实验研究相结合的方法,重点关注热管防冰系统在机上环境和结冰气象条件下的运行特性,明确热管工质特性、工作温度、充液率等因素对热管防冰系统传热性能的影响等建议,为热管防冰系统的设计优化及实际应用提供理论和实验支撑。
Abstract:In order to deeply understand and develop the anti-icing technology of heat pipe, the research status of different types of heat pipes in aircraft anti-icing field was mainly discussed, the theoretical and experimental results of loop heat pipe, rotating heat pipe and gravity heat pipe used in anti-icing of aircraft wings and engine front parts were summarized, the main characteristics of loop heat pipe and rotating heat pipe for anti-icing were sorted out, and the development direction of heat pipe anti-icing technology was prospected. The results showed that the researches on heat pipe anti-icing technology were still at initial stage, and most of them stayed in the design and feasibility verification of heat pipe anti-icing system. These suggested that subsequent research should be concentrated on experiments, and the method of combining numerical calculation and experimental research should be adopted, with a focus on the operation characteristics of heat pipe anti-icing system under the aircraft environment and icing meteorological conditions; moreover, the influences of factors such as the characteristics of the working medium, working temperature and liquid filling rate on the heat transfer performance of the heat pipe anti-icing system were determined, thus providing a theoretical and experimental support for the design optimization and practical application of heat pipe anti-icing system.
-
表 1 传统防冰和除冰方法及缺点
Table 1. Traditional anti-icing and de-icing methods and drawbacks
防冰和除冰方法 实施方式 缺点 液体防冰 表面喷洒防冰液 腐蚀性强、防冰效率有限 机械除冰 气动胀管除冰 需要维修、笨重、除冰不彻底 热气防冰 发动机引气 推力减小,油耗增加 电热防冰 电能转化为热能 高品位能量消耗大 表 2 防冰用环路热管主要特点
Table 2. Main characteristics of loop heat pipes for anti-icing
来源 工作液 工作温度/℃ 环路热管材料 结构特点 传热量或热载荷/W Anderson等人[11] 甲醇/乙醇 –28~340 传统型带泵回路 2930 (最大值)Anderson等人[13] 甲苯/甲醇 30~60 250~300 Phillips等人[14] 10~80 传统型 1500 (最大值)Phillips等人[15-16] 氨 –20~90 不锈钢 多冷凝器型,带旁路阀 3800 杨鹏[17] 水 –20~232 铜 传统型,10根环路热管 500(单根) Valle等人[19-20] 氨 –20~60 多冷凝器型,带开关阀和三通阀 100~400 Zhao等人[21] 乙醇 不锈钢 双储液器型 10~180 Su等人[22] 40%、60%、80%、100%
乙醇-水混合液–20~150 不锈钢 双储液器型 100~300 Su等人[23] 甲醇 不锈钢 60~140 Gregori等人[24] 丙酮
甲醇29~59
50~89铜/不锈钢 传统型 25~500
50~450表 3 防冰用旋转热管的主要特点
Table 3. Main features of rotating heat pipes for anti-icing
来源 工作液 充液率/% 工作温度/℃ 旋转热管材料 转速/
103 (r/min)腔室结构 传热量/W Ponnappan等人[48] 纯水/甲醇 18.3/12.6 20~250 不锈钢 5~30 半锥角为1° 1033 (最大值)/
644(最大值)Gilchrist等人[25] −40~100 铜 5~30 半锥角为0°~3.5° 95~207 Gilchrist等人[27] 水/乙醇 −30~100 铜/不锈钢 5~20 半锥角为1°~5°
或者阶梯形600~ 1700 (水)
400~750(乙醇)宣益民等人[28] 乙醇 −10~94 紫铜 1/2/3 全锥角为0.8° 500~ 3000 连文磊等人[29] 水 4~53 铜 1~10 半锥角为2° 200~600 连文磊等人[30] 水/乙醇 6 铜 1~5 全锥角为1° 200~ 1000 连文磊等人[31] 乙醇 6~23 −20~110 紫铜 1~4.5 全锥角为0.8° 576~ 2048 Du等人[32] 纯水 30 −20~85 黄铜 0.1(最大值) 半锥角为1° 75~200 -
[1] 陆林杰. 飞机结冰影响与除防冰技术综述[J]. 科技创新与应用,2020(16): 136-138. LU Linjie. Overview of aircraft icing influence and anti-icing technology[J]. Technology Innovation and Application,2020(16): 136-138. (in ChineseLU Linjie. Overview of aircraft icing influence and anti-icing technology[J]. Technology Innovation and Application, 2020(16): 136-138. (in Chinese) [2] 常士楠,杨波,冷梦尧,等. 飞机热气防冰系统研究[J]. 航空动力学报,2017,32(5): 1025-1034. CHANG Shinan,YANG Bo,LENG Mengyao,et al. Study on bleed air anti-icing system of aircraft[J]. Journal of Aerospace Power,2017,32(5): 1025-1034. (in ChineseCHANG Shinan, YANG Bo, LENG Mengyao, et al. Study on bleed air anti-icing system of aircraft[J]. Journal of Aerospace Power, 2017, 32(5): 1025-1034. (in Chinese) [3] 肖春华,桂业伟,林贵平. 飞机电热除冰的研究进展与展望[J]. 科技导报,2011,29(18): 69-73. XIAO Chunhua,GUI Yewei,LIN Guiping. A review of studies of aircraft electrothermal de-icing[J]. Science & Technology Review,2011,29(18): 69-73. (in ChineseXIAO Chunhua, GUI Yewei, LIN Guiping. A review of studies of aircraft electrothermal de-icing[J]. Science & Technology Review, 2011, 29(18): 69-73. (in Chinese) [4] CHANG Shinan,SU Qian,SONG Mengjie. An advanced thermal control technique for aircraft anti-icing/de-icing based on loop heat pipes[M]//Advanced analytic and control techniques for thermal systems with heat exchangers. Amsterdam,Netherlands: Elsevier,2020: 337-366. [5] HERRING R L,COLLINS P K. Aircraft subsystem waste energy recovery and management[R]. Warrendale,US: SAE International,1990. [6] PARK Y,JUN S,KIM S,et al. Design optimization of a loop heat pipe to cool a lithium ion battery onboard a military aircraft[J]. Journal of Mechanical Science and Technology,2010,24(2): 609-618. doi: 10.1007/s12206-009-1214-6 [7] 牛文敬,连文磊,林灵矫,等. 基于热管技术的飞机电作动机构散热特性[J]. 航空动力学报,2020,35(4): 711-721. NIU Wenjing,LIAN Wenlei,LIN Lingjiao,et al. Cooling performance of electric actuating mechanism on aircrafts based on heat pipes[J]. Journal of Aerospace Power,2020,35(4): 711-721. (in ChineseNIU Wenjing, LIAN Wenlei, LIN Lingjiao, et al. Cooling performance of electric actuating mechanism on aircrafts based on heat pipes[J]. Journal of Aerospace Power, 2020, 35(4): 711-721. (in Chinese) [8] ELLIS M,ANDERSON W,MONTGOMERY J. Passive thermal management for avionics in high temperature environments[R]. Warrendale,US: SAE International,2014. [9] PAGNONI F,AYEL V,BERTIN Y,et al. Loop heat pipe for thermal management of aircraft engine equipment[J]. Journal of Thermophysics and Heat Transfer,2021,35(2): 323-334. doi: 10.2514/1.T6049 [10] 李朋. 极限条件下航空发动机余热回收方式的探究[D]. 天津: 天津工业大学,2020. LI Peng. Research on the recovery method of aero-engine waste heat under extreme conditions[D]. Tianjin: Tianjin Polytechnic University,2020. (in ChineseLI Peng. Research on the recovery method of aero-engine waste heat under extreme conditions[D]. Tianjin: Tianjin Polytechnic University, 2020. (in Chinese) [11] ANDERSON W G,HOFF S,WINSTANLEY D,et al. Heat pipe cooling of turboshaft engines[R]. Cincinnati,US: ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition,1993. [12] SU Qian,CHANG Shinan,ZHAO Yuanyuan,et al. A review of loop heat pipes for aircraft anti-icing applications[J]. Applied Thermal Engineering,2018,130: 528-540. doi: 10.1016/j.applthermaleng.2017.11.030 [13] ANDERSON W G,CHOW P,YERKES K. Loop heat pipes for anti icing of gas turbine inlets[J]. Journal of Cleaner Production,1995,3(4): 243-244. [14] PHILLIPS A,FALE J,GERNERT N,et al. Loop heat pipe qualification for high vibration and high-g environments[R]. AIAA1998-885,1998. [15] PHILLIPS A,GERNERT N. Passive aircraft anti icing system using waste heat[R]. Warrendale,US: SAE International,1998. [16] PHILLIPS A,WERT K L. Loop heat pipe anti icing system development program summary[R]. Warrendale,US: SAE International,2000. [17] YANG P. Research on large civil aircraft loop heat pipe anti-icing technology[D]. Beijing: Beijing University of Aeronautics and Astronautics,2009. [18] SORIANO E,VALLE P D. Adaptation of current loop heat pipes design into UAVs[R]. Warrendale,US: SAE International,2011. [19] VALLE P D,FERNANDEZ GARC C,DONOVAN M. Passive energy recovery system applied to aeronautical environment testing rig results[R]. Warrendale,US: SAE International,2013. [20] DONOVAN M,VALLE P D. Aeronautical passive energy recovery system based on LHP technology extended test results[R]. Warrendale,US: SAE International,2014. [21] ZHAO Y,CHANG S,YANG B,et al. Experimental study on the thermal performance of loop heat pipe for the aircraft anti-icing system[J]. International Journal of Heat and Mass Transfer,2017,111: 795-803. doi: 10.1016/j.ijheatmasstransfer.2017.04.009 [22] SU Qian,CHANG Shinan,SONG Mengjie,et al. An experimental study on the heat transfer performance of a loop heat pipe system with ethanol-water mixture as working fluid for aircraft anti-icing[J]. International Journal of Heat and Mass Transfer,2019,139: 280-292. doi: 10.1016/j.ijheatmasstransfer.2019.05.015 [23] SU Qian,CHANG Shinan,YANG Chen. Numerical investigation on transient and steady phase change heat transfer in the evaporator of a loop heat pipe[J]. International Journal of Heat and Mass Transfer,2021,179: 121671. doi: 10.1016/j.ijheatmasstransfer.2021.121671 [24] GREGORI C,MISHKINIS D,PRADO P,et al. Loop heat pipe technology for aircraft anti-icing applications[R]. Warrendale,US: SAE International,2007. [25] GILCHRIST S,EWING D,CHING C,et al. Thermal modeling of a rotating heat pipe aero-engine nose cone anti-icing system[R]. Warrendale,US: SAE International,2004. [26] BRAND J H,DOWHAN M J. Anti-icing apparatus and method for aero-engine nose cone: US20090120099[P]. 2009-05-14. [27] GILCHRIST S,EWING D,CHING C Y. On the design of an aero-engine nose cone anti-icing system using a rotating heat pipe[J]. Journal of Thermal Science and Engineering Applications,2009,1(2): 022002. doi: 10.1115/1.4000191 [28] 宣益民,连文磊. 航空发动机整流罩新型防冰方法[J]. 科学通报,2016,61(25): 2843-2850. XUAN Yimin,LIAN Wenlei. A new anti-icing method for an aero-engine nose cone[J]. Chinese Science Bulletin,2016,61(25): 2843-2850. (in Chinese doi: 10.1360/N972016-00445XUAN Yimin, LIAN Wenlei. A new anti-icing method for an aero-engine nose cone[J]. Chinese Science Bulletin, 2016, 61(25): 2843-2850. (in Chinese) doi: 10.1360/N972016-00445 [29] LIAN Wenlei,CHANG Wei,XUAN Yimin. Numerical investigation on flow and thermal features of a rotating heat pipe[J]. Applied Thermal Engineering,2016,101: 92-100. doi: 10.1016/j.applthermaleng.2016.02.110 [30] LIAN Wenlei,HAN Taoyi. Flow and heat transfer in a rotating heat pipe with a conical condenser[J]. International Communications in Heat and Mass Transfer,2019,101: 70-75. doi: 10.1016/j.icheatmasstransfer.2018.12.004 [31] LIAN Wenlei,XUAN Yimin. Experimental investigation on a novel aero-engine nose cone anti-icing system[J]. Applied Thermal Engineering,2017,121: 1011-1021. doi: 10.1016/j.applthermaleng.2017.04.160 [32] DU Chenhui,HUANG Degang. Evaluation of thermal management scheme of engine cowl based on rotating heat pipe[J]. Journal of Physics: Conference Series,2022,2369(1): 012003. doi: 10.1088/1742-6596/2369/1/012003 [33] GONCHAROV K A,NIKITKIN M N,GOLOVIN O A,et al. Loop heat pipes in thermal control systems for “OBZOR” spacecraft[R]. Warrendale,US: SAE International,1995. [34] MAYDANIK Y F. Loop heat pipes[J]. Applied Thermal Engineering,2005,25(5/6): 635-657. [35] MAYDANIK Y,PASTUKHOV V,CHERNYSHEVA M. Development and investigation of a loop heat pipe with a high heat-transfer capacity[J]. Applied Thermal Engineering,2018,130: 1052-1061. doi: 10.1016/j.applthermaleng.2017.11.084 [36] XIE Y,ZHANG Jie,XIE Liyao,et al. Experimental investigation on the operating characteristics of a dual compensation chamber loop heat pipe subjected to acceleration field[J]. Applied Thermal Engineering,2015,81: 297-312. doi: 10.1016/j.applthermaleng.2015.02.014 [37] XIE Yongqi,ZHOU Yang,WEN Dongsheng,et al. Experimental investigation on transient characteristics of a dual compensation chamber loop heat pipe subjected to acceleration forces[J]. Applied Thermal Engineering,2018,130: 169-184. doi: 10.1016/j.applthermaleng.2017.11.014 [38] WENG C Y,LEU T S. Two-phase flow pattern based theoretical study of loop heat pipes[J]. Applied Thermal Engineering,2016,98: 228-237. doi: 10.1016/j.applthermaleng.2015.11.124 [39] KAYA T,PÉREZ R,GREGORI C,et al. Numerical simulation of transient operation of loop heat pipes[J]. Applied Thermal Engineering,2008,28(8/9): 967-974. [40] SIEDEL B,SARTRE V,LEFÈVRE F. Literature review: steady-state modelling of loop heat pipes[J]. Applied Thermal Engineering,2015,75: 709-723. doi: 10.1016/j.applthermaleng.2014.10.030 [41] 张先锋,汪双凤,霍杰鹏,等. 基于混合工质小型环路热管的实验研究[J]. 工程热物理学报,2011,32(12): 2093-2095. ZHANG Xianfeng,WANG Shuangfeng,HUO Jiepeng,et al. Experimental investigation of miniature loop heat pipe with binary mixture[J]. Journal of Engineering Thermophysics,2011,32(12): 2093-2095. (in ChineseZHANG Xianfeng, WANG Shuangfeng, HUO Jiepeng, et al. Experimental investigation of miniature loop heat pipe with binary mixture[J]. Journal of Engineering Thermophysics, 2011, 32(12): 2093-2095. (in Chinese) [42] BUFFONE C,COULLOUX J,ALONSO B,et al. Capillary pressure in graphene oxide nanoporous membranes for enhanced heat transport in Loop Heat Pipes for aeronautics[J]. Experimental Thermal and Fluid Science,2016,78: 147-152. doi: 10.1016/j.expthermflusci.2016.04.019 [43] GRAY V H. The rotating heat pipe: a wickless,hollow shaft for transferring high heat fluxes[R]. ASME Paper 69-HT-19,1969. [44] LI Shuangfei,LIU Zhenhua. Parametric study of rotating heat pipe performance: a review[J]. Renewable and Sustainable Energy Reviews,2020,117: 109482. doi: 10.1016/j.rser.2019.109482 [45] GROLL M,KRAHLING H,MUNZEL W D. Heat pipes for cooling of an electric motor[J]. Journal of Energy,1978,2(6): 363-367. doi: 10.2514/3.62387 [46] JUDD R L,AFTAB K,ELBESTAWI M A. An investigation of the use of heat pipes for machine tool spindle bearing cooling[J]. International Journal of Machine Tools and Manufacture,1994,34(7): 1031-1043. doi: 10.1016/0890-6955(94)90033-7 [47] PONNAPPAN R,LELAND J E. High speed rotating heat pipe for aircraft applications[R]. Warrendale,US: SAE International,1995. [48] PONNAPPAN R,HE Q,LELAND J,et al. Test results of a high speed rotating heat pipe[R]. AIAA1997-2543,1997. [49] PONNAPPAN R,LELAND J E. Rotating heat pipe for high speed motor/generator cooling[R]. Warrendale,US: SAE International,1998. [50] 陈思员,李鹏飞,薛志虎,等. 航天十一院热管军民两用技术的最新进展[J]. 军民两用技术与产品,2014(5): 56-58. CHEN Siyuan,LI Pengfei,XUE Zhihu,et al. Recent progress of CAAA heat pipes for military-civil application[J]. Dual Use Technologies & Products,2014(5): 56-58. (in ChineseCHEN Siyuan, LI Pengfei, XUE Zhihu, et al. Recent progress of CAAA heat pipes for military-civil application[J]. Dual Use Technologies & Products, 2014(5): 56-58. (in Chinese) [51] HASSAN H,HARMAND S. Effect of using nanofluids on the performance of rotating heat pipe[J]. Applied Mathematical Modelling,2015,39(15): 4445-4462. doi: 10.1016/j.apm.2014.12.023 [52] SONG F,EWING D,CHING C Y. Experimental investigation on the heat transfer characteristics of axial rotating heat pipes[J]. International Journal of Heat and Mass Transfer,2004,47(22): 4721-4731. doi: 10.1016/j.ijheatmasstransfer.2004.06.001 [53] DYSON R W,RODRIGUEZ L A,ROTH M E. Solid-state exergy optimized electric aircraft thermal and fault management[R] AIAA2020-3576,2020. [54] ELLIS M,ANDERSON W,MONTGOMERY J. Passive thermal management for avionics in high temperature environments[R]. Cincinnati,US: SAE 2014 Aerospace Systems and Technology Conference,2014. [55] HENDRICKS T J,TARAU C,DYSON R W. Hybrid electric aircraft thermal management: now,new visions and future concepts and formulation[C]//2021 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm). Piscataway,US: IEEE,2021: 467-476. [56] DIEBOLD J,LEITHERER B,TARAU C,et al. Development of a large-scale thermosyphon for cooling the fault management system of a MW-scale electric aircraft[R]. AIAA2023-1773,2023. [57] LANGSTON L,FAGHRI A. Heat pipe turbine vane cooling[R]. Washington,US: South Carolina Energy Research and Development Center,1995. [58] YAMAWAKI S,YOSHIDA T,TAKI M,et al. Fundamental heat transfer experiments of heat pipes for turbine cooling[J]. Journal of Engineering for Gas Turbines and Power,1998,120(3): 580-587. doi: 10.1115/1.2818186 [59] PETRUCCI M,FAGHRI A. Heat pipe turbine vane integration in gas turbine engines[J]. Frontiers in Heat and Mass Transfer,2019,11: 37-45. [60] MCNICHOLS E O,JONES S M,MIRHASHEMI A,et al. Preliminary study of heat pipe turbine vane cooling in the NASA N+3 reference engine[R]. Virtual,Online: ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition,2021. [61] OZSOY A,YILDIRIM R. Prevention of icing with ground source heat pipe: a theoretical analysis for Turkey’s climatic conditions[J]. Cold Regions Science and Technology,2016,125: 65-71. doi: 10.1016/j.coldregions.2016.02.003 [62] NYDAHL J E,PELL K,LEE R. Bridge deck heating with ground-coupled heat pipes: analysis and design[J]. ASHRAE transactions,1987,93: 939-958. [63] ZORN R,STEGER H,KOLBEL T. De-icing and snow melting system with innovative heat pipe technology[R]. Melbourne,Australia: World Geothermal Congress,2015. [64] ZHANG Chi,TAN Yiqiu,CHEN Fengchen,et al. Long-term thermal analysis of an airfield-runway snow-melting system utilizing heat-pipe technology[J]. Energy Conversion and Management,2019,186: 473-486. doi: 10.1016/j.enconman.2019.03.008 [65] VIZITIU R Ș,BURLACU A,SEGHEDIN N E. An interesting approach for icing prevention of walkways for Romania’s climatic conditions[J]. Procedia Manufacturing,2020,46: 424-431. doi: 10.1016/j.promfg.2020.03.062 [66] LI Xiaojuan,GUO Wenfeng,LI Yan,et al. Wind tunnel test of an anti-icing approach by heat pipe for wind turbine bladesunder the rime ice condition[J]. Thermal Science,2021,25(6 Part B): 4485-4493. -