Simulation on filling process of gas generator head with gas injecting
-
摘要:
以高压补燃液氧煤油火箭发动机起动过程为背景,研究有气体吹入的燃气发生器头腔充填过程。首先通过实验,确定马尔基涅利经验关系式所需系数
$ n $ 为2.29,验证了经验关系式的准确性;其次利用有限元分割建立有气体吹入的燃气发生器头腔的一维分布参数模型,并将实验数据与经验关系式、一维分布模型仿真结果进行对比分析,证明了该模型的准确性。结果表明:一维分布参数模型稳态压强与实验数据平均值误差为0.429%,经验关系式(集中参数模型)误差为1.464%;喷嘴喷注面积增加,头腔内建压速度减慢,且稳定压强值降低;头腔体积增加,建压速度减慢,但压强稳定值不变;头腔摩擦因数增加,压强稳定值与充填速度降低。Abstract:Based on the starting process of high-pressure combustion liquid oxygen kerosene rocket engine, the filling process of the head cavity of the gas generator with gas injecting was studied. Firstly, experiments indicated that the coefficient
n required for the Marquinelli empirical relation was determined to be 2.29, which verified the accuracy of the empirical relationship. Secondly, the finite element segmentation was used to establish a one-dimensional distribution parameter model of the head cavity of the gas generator with gas injecting, and the experimental data were compared and analyzed with the empirical relationship and the simulation results of the one-dimensional distribution model, which proved the accuracy of the model. The results showed that the error between steady-state pressure and the mean value of experimental data of the one-dimensional distribution parameter model was 0.429%, and the error of the empirical relationship (centralized parameter model) was 1.464%; the flow area of the injecting increased, the pressure built into the head cavity slowed down, and the stable pressure value decreased; the volume of the head cavity increased, and the pressure building speed slowed down, but the pressure stability value was kept unchanged; the resistance coefficient of the head cavity increased, and the pressure stability value and filling speed decreased. -
表 1 各工况下系数n
Table 1. Coefficient n under different working conditions
实验
序号仅有气体
压降$ /\mathrm{M}\mathrm{P}\mathrm{a} $仅有液体
压降$ /\mathrm{M}\mathrm{P}\mathrm{a} $两相时
压降$ /\mathrm{M}\mathrm{P}\mathrm{a} $系数$ n $ 9 0.1103 0.0535 0.3891 2.29974 10 0.1908 0.0535 0.5351 2.27864 11 0.2876 0.0535 0.707 2.29336 12 0.3552 0.0535 0.8204 2.29981 13 0.1103 0.0663 0.4493 2.37378 14 0.1908 0.0663 0.5891 2.30218 15 0.2876 0.0663 0.7573 2.28856 16 0.3552 0.0663 0.8627 2.27232 -
[1] 谭永华. 大推力液体火箭发动机研究[J]. 宇航学报,2013,34(10): 1303-1308. TAN Yonghua. Research on large thrust liquid rocket engine[J]. Journal of Astronautics,2013,34(10): 1303-1308. (in Chinese doi: 10.3873/j.issn.1000-1328.2013.10.002TAN Yonghua. Research on large thrust liquid rocket engine[J]. Journal of Astronautics, 2013, 34(10): 1303-1308. (in Chinese) doi: 10.3873/j.issn.1000-1328.2013.10.002 [2] 张贵田 高压补燃液氧煤油发动机[M]. 北京: 国防工业出版社,2005. [3] 汪小卫,金平,张国舟,等. 全流量补燃循环试验发动机启动过程[J]. 推进技术,2008,29(4): 407-411. WANG Xiaowei,JIN Ping,ZHANG Guozhou,et al. Start-up in a subscale full flow staged combustion cycle engine[J]. Journal of Propulsion Technology,2008,29(4): 407-411. (in Chinese doi: 10.3321/j.issn:1001-4055.2008.04.004WANG Xiaowei, JIN Ping, ZHANG Guozhou, et al. Start-up in a subscale full flow staged combustion cycle engine[J]. Journal of Propulsion Technology, 2008, 29(4): 407-411. (in Chinese) doi: 10.3321/j.issn:1001-4055.2008.04.004 [4] 孙靖阳,马原,张淼,等. 燃气发生器内气体吹除过程压降特性实验研究[J]. 西安交通大学学报,2023,57(3): 79-85,96. SUN Jingyang,MA Yuan,ZHANG Miao,et al. Experimental study of pressure drop characteristics on gas injection and emulsification process in gas generator chamber[J]. Journal of Xi’an Jiaotong University,2023,57(3): 79-85,96. (in Chinese doi: 10.7652/xjtuxb202303007SUN Jingyang, MA Yuan, ZHANG Miao, et al. Experimental study of pressure drop characteristics on gas injection and emulsification process in gas generator chamber[J]. Journal of Xi’an Jiaotong University, 2023, 57(3): 79-85, 96. (in Chinese) doi: 10.7652/xjtuxb202303007 [5] 岳春国,李进贤,侯晓,等. 变推力液体火箭发动机综述[J]. 中国科学(E辑: 技术科学),2009,39(3): 464-468. YUE Chunguo,LI Jinxian,HOU Xiao,et al. Summary of variable thrust liquid rocket engine[J]. Science in China (Series E:Technological Sciences),2009,39(3): 464-468. (in ChineseYUE Chunguo, LI Jinxian, HOU Xiao, et al. Summary of variable thrust liquid rocket engine[J]. Science in China (Series E: Technological Sciences), 2009, 39(3): 464-468. (in Chinese) [6] 张小平,丁丰年. 富氧补燃循环发动机启动过程[J]. 推进技术,2004,25(1): 82-85. ZHANG Xiaoping,DING Fengnian. Starting process of oxidizer-rich staged combustion rocket engine[J]. Journal of Propulsion Technology,2004,25(1): 82-85. (in Chinese doi: 10.3321/j.issn:1001-4055.2004.01.022ZHANG Xiaoping, DING Fengnian. Starting process of oxidizer-rich staged combustion rocket engine[J]. Journal of Propulsion Technology, 2004, 25(1): 82-85. (in Chinese) doi: 10.3321/j.issn:1001-4055.2004.01.022 [7] 马冬英,卢钢,张小平,等. 液氧/甲烷燃气发生器试验研究[J]. 火箭推进,2013,39(3): 21-26. MA Dongying,LU Gang,ZHANG Xiaoping,et al. Research on hot tests of LOX/methane gas generator[J]. Journal of Rocket Propulsion,2013,39(3): 21-26. (in Chinese doi: 10.3969/j.issn.1672-9374.2013.03.004MA Dongying, LU Gang, ZHANG Xiaoping, et al. Research on hot tests of LOX/methane gas generator[J]. Journal of Rocket Propulsion, 2013, 39(3): 21-26. (in Chinese) doi: 10.3969/j.issn.1672-9374.2013.03.004 [8] DRESSLER G. Summary of deep throttling rocket engines with emphasis on Apollo LMDE [R]. AIAA-2006-5220,2006. [9] CASIANO M J,HULKA J R,YANG V. Liquid-propellant rocket engine throttling: a comprehensive review[J]. Journal of Propulsion and Power,2010,26(5): 897-923. doi: 10.2514/1.49791 [10] 曹泰岳. 火箭发动机动力学[M]. 长沙: 国防科技大学出版社,2004. [11] BELYAEV E N,CHVANOV V K,CHERVAKOV V V. The outflow of a two-phase gas-liquid mixture from the mixing head of a gas generator when starting a liquid-propellant rocket engine[J]. High Temperature,2005,43(3): 446-451. [12] 张远君. 两相流体动力学: 基础理论及工程应用[M]. 北京: 北京航空学院出版社,1987. [13] 李程,刘站国,徐浩海. 双推力室起动同步性研究[J]. 火箭推进,2014,40(4): 16-21,56. LI Cheng,LIU Zhanguo,XU Haohai. Study on synchronous ignition of dual-thrust chamber engine[J]. Journal of Rocket Propulsion,2014,40(4): 16-21,56. (in Chinese doi: 10.3969/j.issn.1672-9374.2014.04.004LI Cheng, LIU Zhanguo, XU Haohai. Study on synchronous ignition of dual-thrust chamber engine[J]. Journal of Rocket Propulsion, 2014, 40(4): 16-21, 56. (in Chinese) doi: 10.3969/j.issn.1672-9374.2014.04.004 [14] 谭永华,杜飞平,陈建华,等. 液氧煤油高压补燃循环发动机深度变推力系统方案研究[J]. 推进技术,2018,39(6): 1201-1209. TAN Yonghua,DU Feiping,CHEN Jianhua,et al. Study on deep variable thrust system of LOX/kerosene high pressure staged combustion engine[J]. Journal of Propulsion Technology,2018,39(6): 1201-1209. (in ChineseTAN Yonghua, DU Feiping, CHEN Jianhua, et al. Study on deep variable thrust system of LOX/kerosene high pressure staged combustion engine[J]. Journal of Propulsion Technology, 2018, 39(6): 1201-1209. (in Chinese) [15] GAUFFRE M C,NEAU H,SIMONIN O,et al. Numerical simulation of dome filling in an experimental rocket engine mockup[J]. Journal of Propulsion and Power,2014,30(3): 617-627. doi: 10.2514/1.B34904 [16] 刘昆,张育林. 液体推进系统充填过程的有限元状态变量模型[J]. 推进技术,2001,22(1): 19-21. LIU Kun,ZHANG Yulin. Finite element state-variable models for the priming process of feed lines[J]. Journal of Propulsion Technology,2001,22(1): 19-21. (in Chinese doi: 10.3321/j.issn:1001-4055.2001.01.005LIU Kun, ZHANG Yulin. Finite element state-variable models for the priming process of feed lines[J]. Journal of Propulsion Technology, 2001, 22(1): 19-21. (in Chinese) doi: 10.3321/j.issn:1001-4055.2001.01.005 [17] 张育林,刘昆,程谋森. 液体火箭发动机动力学理论与应用[M]. 北京: 科学出版社,2005. [18] 陈宏玉,刘红军,陈建华,等. 基于谱方法的管路充填过程仿真[J]. 航空动力学报,2012,27(9): 2134-2139. CHEN Hongyu,LIU Hongjun,CHEN Jianhua,et al. Investigation of priming process of propellant lines using Fourier spectral method[J]. Journal of Aerospace Power,2012,27(9): 2134-2139. (in ChineseCHEN Hongyu, LIU Hongjun, CHEN Jianhua, et al. Investigation of priming process of propellant lines using Fourier spectral method[J]. Journal of Aerospace Power, 2012, 27(9): 2134-2139. (in Chinese) -