留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

民机液压管路压接参数研究及高压振动特性分析

于灵杰 杨建忠 徐兆可 陈世康

于灵杰, 杨建忠, 徐兆可, 等. 民机液压管路压接参数研究及高压振动特性分析[J]. 航空动力学报, 2024, 39(X):20220786 doi: 10.13224/j.cnki.jasp.20220786
引用本文: 于灵杰, 杨建忠, 徐兆可, 等. 民机液压管路压接参数研究及高压振动特性分析[J]. 航空动力学报, 2024, 39(X):20220786 doi: 10.13224/j.cnki.jasp.20220786
YU Lingjie, YANG Jianzhong, XU Zhaoke, et al. Research on crimping parameters of civil aircraft hydraulic pipeline and analysis of its high pressure vibration characteristics[J]. Journal of Aerospace Power, 2024, 39(X):20220786 doi: 10.13224/j.cnki.jasp.20220786
Citation: YU Lingjie, YANG Jianzhong, XU Zhaoke, et al. Research on crimping parameters of civil aircraft hydraulic pipeline and analysis of its high pressure vibration characteristics[J]. Journal of Aerospace Power, 2024, 39(X):20220786 doi: 10.13224/j.cnki.jasp.20220786

民机液压管路压接参数研究及高压振动特性分析

doi: 10.13224/j.cnki.jasp.20220786
基金项目: 中央高校基本科研业务费(KJZ53420210088)
详细信息
    作者简介:

    于灵杰(1993-),女,助理实验师,硕士,主要研究方向为航空器适航审定工程。E-mail:15510928918@163.com

  • 中图分类号: V267

Research on crimping parameters of civil aircraft hydraulic pipeline and analysis of its high pressure vibration characteristics

  • 摘要:

    研究4种规格液压管路的压接修理参数,并分析其在3种压力级别下的动力学特性变化规律。首先建立压接修理后液压管路的有限元模型,通过模态分析可知,当压接间隙为0 mm时,管路的各阶固有频率不随压接长度的改变发生明显变化,在0~1580 Hz频率范围内,随管路直径增大,管路所承受的最大范式应力值减小。因此,4种规格液压管路的压接间隙应为0 mm,压接长度根据飞机维修手册而定。在3种压力级别下对4种规格液压管路进行动力学特性分析,管路各阶固有频率均随压力增加而变大,最大变形量在3种压力级别下均小于5 mm,0.25 inch管路在35 MPa下的等效应力远大于21 MPa和28 MPa下的等效应力,且大于其余3种规格液压管路,管路等效应力最大的部位在压接接头处。

     

  • 图 1  压接管示意图

    Figure 1.  Schematic diagram of pressure pipe

    图 2  管路模型图

    Figure 2.  Pipeline model diagram

    图 3  流体模型图

    Figure 3.  Fluid model diagram

    图 4  管路压接区域示意图

    Figure 4.  Schematic diagram of pipe crimping area

    图 5  流体的局部网格划分图

    Figure 5.  Local grid division diagram of fluid

    图 6  管路的局部网格划分图

    Figure 6.  Local grid division diagram of pipeline

    图 7  管路的主要约束示意图

    Figure 7.  Schematic diagram of main constraints of pipeline

    图 8  接触区域示意图

    Figure 8.  Schematic diagram of contact area

    图 9  0.25 inch管路最大范式应力随压接长度变化曲线

    Figure 9.  Curve of maximum normal stress of 0.25 inch pipeline changing with crimping length

    图 10  0.375 inch管路最大范式应力随压接长度变化曲线

    Figure 10.  Curve of maximum normal stress of 0.375 inch pipeline changing with crimping length

    图 11  0.625 inch管路最大范式应力随压接长度变化曲线

    Figure 11.  Curve of maximum normal stress of 0.625 inch pipeline changing with crimping length

    图 12  0.75 inch管路最大范式应力随压接长度变化曲线

    Figure 12.  Curve of maximum normal stress of 0.75 inch pipeline changing with crimping length

    图 13  固有频率随管内压力的变化曲线

    Figure 13.  Curve of natural frequency changing with pressure in pipeline

    图 14  管路总变形随管内压力变化曲线

    Figure 14.  Curve of total deformation of pipeline changing with pressure in pipeline

    图 15  0.25 inch液压管路在3种压力下的等效应力

    Figure 15.  Equivalent stress of 0.25 inch hydraulic pipeline under three pressures

    图 16  0.375 inch液压管路在3种压力下的等效应力

    Figure 16.  Equivalent stress of 0.375 inch hydraulic pipeline under three pressures

    图 17  0.625 inch液压管路在3种压力下的等效应力

    Figure 17.  Equivalent stress of 0.625 inch hydraulic pipeline under three pressures

    图 18  0.75 inch液压管路在3种压力下的等效应力

    Figure 18.  Equivalent stress of 0.75 inch hydraulic pipeline under three pressures

    图 19  管路等效应力随管内压力变化曲线

    Figure 19.  Curve of equivalent stress of pipeline changing with pressure in pipeline

    表  1  液压管规格及压接长度

    Table  1.   Specification and crimping length of hydraulic pipe

    参数数值
    0.25 inch0.375 inch0.625 inch0.75 inch
    导管外径D/mm6.359.5315.8819.05
    导管壁厚δ/mm0.410.510.840.99
    压接长度(L/2)/mm17.5+519.6+533.3+535.1+5
    下载: 导出CSV

    表  2  某型飞机液压系统激励源频率分布

    Table  2.   Frequency distribution of excitation source of a certain aircraft hydraulic system

    频率范围f/Hz 激励源频率分布
    0~200 发动机、机体结构等振源频率
    300~600 发动机驱动泵(engine-driven pump,EDP)压力脉动频率
    800~1580 电动马达驱动泵(electric moter-driven pump,EMP)压力脉动频率
    下载: 导出CSV
  • [1] 郭庆. 飞机液压系统管道流固耦合分析[D]. 上海: 上海交通大学,2010: 1-2. GUO Qing. The Analysis of Fluid-structure Interaction in Pipelines of Aircraft Hydraulic System[D]. Shanghai: Shanghai Jiao Tong University,2010: 1-2. (in Chinese

    GUO Qing. The Analysis of Fluid-structure Interaction in Pipelines of Aircraft Hydraulic System[D]. Shanghai: Shanghai Jiao Tong University, 2010: 1-2. (in Chinese)
    [2] 王占林. 飞机高压液压能源系统[M]. 北京: 北京航空航天大学出版社,2004: 201-232.
    [3] 陈果,罗云,郑其辉,等. 复杂空间载流管道系统流固耦合动力学模型及其验证[J]. 航空学报,2013,34(3): 597-609. CHEN Guo,LUO Yun,ZHENG Qihui,et al. Fluid-structure coupling dynamic model of complex spatial fluid-conveying pipe system and its verification[J]. Acta Aeronautica et Astronautica Sinica,2013,34(3): 597-609. (in Chinese

    CHEN Guo, LUO Yun, ZHENG Qihui, et al. Fluid-structure coupling dynamic model of complex spatial fluid-conveying pipe system and its verification[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 597-609. (in Chinese)
    [4] 党锡淇,黄幼玲. 工程中的管道振动问题[J]. 力学与实践,1993,15(4): 9-16. DANG Xiqi,HUANG Youling. Pipeline vibration in engineering[J]. Mechanics and Engineering,1993,15(4): 9-16. (in Chinese

    DANG Xiqi, HUANG Youling. Pipeline vibration in engineering[J]. Mechanics and Engineering, 1993, 15(4): 9-16. (in Chinese)
    [5] PITTARD M T,EVANS R P,MAYNES R D,et al. Experimental and numerical investigation of turbulent flow induced pipe vibration in fully developed flow[J]. Review of Scientific Instruments,2004,75(7): 2393-2401. doi: 10.1063/1.1763256
    [6] BEZBORODOV S A,ULANOV A M. Calculation of vibration of pipeline bundle with damping support made of MR material[J]. Procedia Engineering,2017,176: 169-174. doi: 10.1016/j.proeng.2017.02.285
    [7] 权凌霄,孙冰江,赵劲松,等. 航空弯曲液压管路流固耦合振动频响分析[J]. 西北工业大学学报,2018,36(3): 487-495. QUAN Lingxiao,SUN Bingjiang,ZHAO Jinsong,et al. Frequency response analysis of fluid-structure interaction vibration in aircraft bending hydraulic pipe[J]. Journal of Northwestern Polytechnical University,2018,36(3): 487-495. (in Chinese doi: 10.3969/j.issn.1000-2758.2018.03.012

    QUAN Lingxiao, SUN Bingjiang, ZHAO Jinsong, et al. Frequency response analysis of fluid-structure interaction vibration in aircraft bending hydraulic pipe[J]. Journal of Northwestern Polytechnical University, 2018, 36(3): 487-495. (in Chinese) doi: 10.3969/j.issn.1000-2758.2018.03.012
    [8] 钟林林. 飞机液压管路系统振动仿真分析[D]. 沈阳: 沈阳航空航天大学,2018: 1-8. ZHONG Linlin. Vibration Simulation Analysis of Aircraft Hydraulic Pipeline System[D]. Shenyang: Shenyang Aerospace University,2018: 1-8. (in Chinese

    ZHONG Linlin. Vibration Simulation Analysis of Aircraft Hydraulic Pipeline System[D]. Shenyang: Shenyang Aerospace University, 2018: 1-8. (in Chinese)
    [9] 丁旭. 飞机液压管路系统振动传递路径及规律研究[D]. 秦皇岛: 燕山大学,2017: 5-10. DING Xu. Study on Vibration Transfer Path and Regularity of Aircraft Hydraulic Pipeline System[D]. Qinhuangdao: Yanshan University,2017: 5-10. (in Chinese

    DING Xu. Study on Vibration Transfer Path and Regularity of Aircraft Hydraulic Pipeline System[D]. Qinhuangdao: Yanshan University, 2017: 5-10. (in Chinese)
    [10] 宋玉山,任孝东,任峰. 液压管路动态特性分析与试验[J]. 锻压装备与制造技术,2018,53(4): 79-82. SONG Yushan,REN Xiaodong,REN Feng. Analysis and test of dynamic characteristics of hydraulic pipeline[J]. China Metalforming Equipment & Manufacturing Technology,2018,53(4): 79-82. (in Chinese

    SONG Yushan, REN Xiaodong, REN Feng. Analysis and test of dynamic characteristics of hydraulic pipeline[J]. China Metalforming Equipment & Manufacturing Technology, 2018, 53(4): 79-82. (in Chinese)
    [11] 桑勇,邵利来,王旭东. 基于ANSYS大流量管路流固耦合振动分析[J]. 液压气动与密封,2018,38(7): 1-5. SANG Yong,SHAO Lilai,WANG Xudong. Vibration analysis of fluid-structure interaction for large flow pipeline with ANSYS[J]. Hydraulics Pneumatics & Seals,2018,38(7): 1-5. (in Chinese doi: 10.3969/j.issn.1008-0813.2018.07.001

    SANG Yong, SHAO Lilai, WANG Xudong. Vibration analysis of fluid-structure interaction for large flow pipeline with ANSYS[J]. Hydraulics Pneumatics & Seals, 2018, 38(7): 1-5. (in Chinese) doi: 10.3969/j.issn.1008-0813.2018.07.001
    [12] 袁航,张建宇. 筒盖液压系统管路振动分析[J]. 橡塑技术与装备,2017,43(20): 55-57. YUAN Hang,ZHANG Jianyu. Pipe vibration analysis of cylinder cover hydraulic system[J]. China Rubber/Plastics Technology and Equipment,2017,43(20): 55-57. (in Chinese

    YUAN Hang, ZHANG Jianyu. Pipe vibration analysis of cylinder cover hydraulic system[J]. China Rubber/Plastics Technology and Equipment, 2017, 43(20): 55-57. (in Chinese)
    [13] 赵千里,孙志礼,柴小冬. 具有弹性支承输流管路的振动分析[J]. 振动 测试与诊断,2017,37(6): 1222-1226,1284. ZHAO Qianli,SUN Zhili,CHAI Xiaodong. Vibration analysis of fluid conveying pipe with elastic support[J]. Journal of Vibration,Measurement & Diagnosis,2017,37(6): 1222-1226,1284. (in Chinese

    ZHAO Qianli, SUN Zhili, CHAI Xiaodong. Vibration analysis of fluid conveying pipe with elastic support[J]. Journal of Vibration, Measurement & Diagnosis, 2017, 37(6): 1222-1226, 1284. (in Chinese)
    [14] 夏永胜,张成龙. 基于ANSYS Workbench的液压管道流固耦合振动分析[J]. 流体传动与控制,2017(3): 38-41,57. XIA Yongsheng,ZHANG Chenglong. Hydraulic pipeline fluid-structure interaction vibration calculation based on ANSYS workbench[J]. Fluid Power Transmission & Control,2017(3): 38-41,57. (in Chinese doi: 10.3969/j.issn.1672-8904.2017.03.010

    XIA Yongsheng, ZHANG Chenglong. Hydraulic pipeline fluid-structure interaction vibration calculation based on ANSYS workbench[J]. Fluid Power Transmission & Control, 2017(3): 38-41, 57. (in Chinese) doi: 10.3969/j.issn.1672-8904.2017.03.010
    [15] 赵孟文,樊泽明. 振动及液压脉冲影响下的管路应力分析[J]. 山东工业技术,2017(6): 284-285. ZHAO Mengwen,FAN Zeming. 振动及液压脉冲影响下的管路应力分析[J]. Journal of Shandong Industrial Technology,2017(6): 284-285. (in Chinese
    [16] 韩涛,刘伟,张子骏,等. 基于直曲组集算法的复杂液压管路固有频率分析[J]. 振动与冲击,2018,37(7): 13-22,61. HAN Tao,LIU Wei,ZHANG Zijun,et al. Natural frequency analysis of complex hydraulic pipelines based on straight-curved pipeline assembly algorithm[J]. Journal of Vibration and Shock,2018,37(7): 13-22,61. (in Chinese

    HAN Tao, LIU Wei, ZHANG Zijun, et al. Natural frequency analysis of complex hydraulic pipelines based on straight-curved pipeline assembly algorithm[J]. Journal of Vibration and Shock, 2018, 37(7): 13-22, 61. (in Chinese)
    [17] 高亚坤,靖红顺,张生乐,等. 船舶蒸汽系统管路振动试验及分析[J]. 船海工程,2017,46(4): 65-68. GAO Yakun,JING Hongshun,ZHANG Shengle,et al. Experimental analysis on vibration of ship’s steam pipeline system[J]. Ship & Ocean Engineering,2017,46(4): 65-68. (in Chinese

    GAO Yakun, JING Hongshun, ZHANG Shengle, et al. Experimental analysis on vibration of ship’s steam pipeline system[J]. Ship & Ocean Engineering, 2017, 46(4): 65-68. (in Chinese)
    [18] 于韶明,芦田,卫国,等. 基于应变分析的管路振动研究[J]. 动力学与控制学报,2017,15(6): 512-517. YU Shaoming,LU Tian,WEI Guo,et al. Research on pipeliine’s vibration based on strain analysis[J]. Journal of Dynamics and Control,2017,15(6): 512-517. (in Chinese doi: 10.6052/1672-6553-2017-44

    YU Shaoming, LU Tian, WEI Guo, et al. Research on pipeliine’s vibration based on strain analysis[J]. Journal of Dynamics and Control, 2017, 15(6): 512-517. (in Chinese) doi: 10.6052/1672-6553-2017-44
    [19] 朴学奎. 民用飞机液压系统压力级别选取论证研究[J]. 流体传动与控制,2011(6): 22-24. PIAO Xuekui. Research about pressure selection of hydraulic system in civil aircraft[J]. Fluid Power Transmission & Control,2011(6): 22-24. (in Chinese doi: 10.3969/j.issn.1672-8904.2011.06.006

    PIAO Xuekui. Research about pressure selection of hydraulic system in civil aircraft[J]. Fluid Power Transmission & Control, 2011(6): 22-24. (in Chinese) doi: 10.3969/j.issn.1672-8904.2011.06.006
    [20] 白欢欢. 基于变刚度弹性支承的液压管路流固耦合振动的数值分析[D]. 秦皇岛: 燕山大学,2014: 1-3. BAI Huanhuan. Numerical analysis on the fluid-solid coupling vibration of hydraulic pipeline with elastic support[D]. Qinhuangdao: Yanshan University,2014: 1-3. (in Chinese

    BAI Huanhuan. Numerical analysis on the fluid-solid coupling vibration of hydraulic pipeline with elastic support[D]. Qinhuangdao: Yanshan University, 2014: 1-3. (in Chinese)
    [21] 权凌霄,孔祥东,高英杰,等. 不考虑进口特性的蓄能器吸收冲击理论及试验[J]. 机械工程学报,2007,43(9): 28-32. QUAN Lingxiao,KONG Xiangdong,GAO Yingjie,et al. Theory and experiment of accumulator absorbing pressure pulsation without regard to its entrance characteristics[J]. Chinese Journal of Mechanical Engineering,2007,43(9): 28-32. (in Chinese doi: 10.3321/j.issn:0577-6686.2007.09.007

    QUAN Lingxiao, KONG Xiangdong, GAO Yingjie, et al. Theory and experiment of accumulator absorbing pressure pulsation without regard to its entrance characteristics[J]. Chinese Journal of Mechanical Engineering, 2007, 43(9): 28-32. (in Chinese) doi: 10.3321/j.issn:0577-6686.2007.09.007
    [22] 于灵杰. 压接修理民机液压管路振动特性分析[D]. 天津: 中国民航大学,2019: 20-39. YU Lingjie. Vibration characteristics analysis of civil aircraft hydraulic pipeline repaired by pressure welding[D]. Tianjin: Civil Aviation University of China,2019: 20-39. (in Chinese

    YU Lingjie. Vibration characteristics analysis of civil aircraft hydraulic pipeline repaired by pressure welding[D]. Tianjin: Civil Aviation University of China, 2019: 20-39. (in Chinese)
    [23] 国防科学技术工业委员会. 飞机装配工艺导管安装标准: HB/Z223.20-2002[S]. 北京: 中国航空综合技术研究所,2003: 13-14.
    [24] 蒋红旗,王繁生. 起重机吊臂结构有限元模态分析[J]. 农业机械学报,2006,37(3): 20-22. JIANG Hongqi,WANG Fansheng. Vibration mode analysis of crane jib using finite element method[J]. Transactions of the Chinese Society for Agricultural Machinery,2006,37(3): 20-22. (in Chinese doi: 10.3969/j.issn.1000-1298.2006.03.006

    JIANG Hongqi, WANG Fansheng. Vibration mode analysis of crane jib using finite element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(3): 20-22. (in Chinese) doi: 10.3969/j.issn.1000-1298.2006.03.006
    [25] 李春润,王春林. 小口径内涂层管道机械压接技术研究[J]. 石油工程建设,1996,22(3): 9-14,61. LI Chunrun,WANG Chunlin. The research on mechanical crimp-connection technique for small diameter pipelines with internal coating[J]. Petroleum Engineering Construction,1996,22(3): 9-14,61. (in Chinese

    LI Chunrun, WANG Chunlin. The research on mechanical crimp-connection technique for small diameter pipelines with internal coating[J]. Petroleum Engineering Construction, 1996, 22(3): 9-14, 61. (in Chinese)
    [26] 赵运才,黄书烽. 立式粉磨机立柱模态与谐响应分析[J]. 矿业研究与开发,2012,32(6): 94-97. ZHAO Yuncai,HUANG Shufeng. Vibration modal and harmonic response analysis on vertical pillar of vertical mill[J]. Mining Research and Development,2012,32(6): 94-97. (in Chinese

    ZHAO Yuncai, HUANG Shufeng. Vibration modal and harmonic response analysis on vertical pillar of vertical mill[J]. Mining Research and Development, 2012, 32(6): 94-97. (in Chinese)
    [27] 焦宗夏. 飞机液压能源管路系统的振动特性分析[J]. 北京航空航天大学学报,1997,23(3): 316-321. JIAO Zongxia. Vibration analysis of the aircraft fluid power and pipeline systems[J]. Journal of Beijing University of Aeronautics and Astronautics,1997,23(3): 316-321. (in Chinese

    JIAO Zongxia. Vibration analysis of the aircraft fluid power and pipeline systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(3): 316-321. (in Chinese)
    [28] 潘陆原,王占林,裘丽华. 飞机液压能源系统管路振动特性分析[J]. 机床与液压,2000,28(6): 20-21. PAN Luyuan,WANG Zhanlin,QIU Lihua. “,” issue_id “: ” jcyyy_2000_6[J]. Machine Tool & Hydraulics,2000,28(6): 20-21. (in Chinese

    PAN Luyuan, WANG Zhanlin, QIU Lihua. “, ” issue_id “: ” jcyyy_2000_6[J]. Machine Tool & Hydraulics, 2000, 28(6): 20-21. (in Chinese)
    [29] 杨斌,张建波. 民机液压系统振动技术研究[J]. 液压与气动,2018(3): 101-105. YANG Bin,ZHANG Jianbo. Study on vibration of civil aircraft hydraulic system[J]. Chinese Hydraulics & Pneumatics,2018(3): 101-105. (in Chinese doi: 10.11832/j.issn.1000-4858.2018.03.016

    YANG Bin, ZHANG Jianbo. Study on vibration of civil aircraft hydraulic system[J]. Chinese Hydraulics & Pneumatics, 2018(3): 101-105. (in Chinese) doi: 10.11832/j.issn.1000-4858.2018.03.016
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  6
  • HTML浏览量:  7
  • PDF量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-13
  • 网络出版日期:  2024-04-28

目录

    /

    返回文章
    返回