留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加工误差对超声速叶栅气动性能影响的不确定性分析

刘铠烨 楚武利 郭正涛 梁彩云 孟德君

刘铠烨, 楚武利, 郭正涛, 等. 加工误差对超声速叶栅气动性能影响的不确定性分析[J]. 航空动力学报, 2024, 39(X):20220791 doi: 10.13224/j.cnki.jasp.20220791
引用本文: 刘铠烨, 楚武利, 郭正涛, 等. 加工误差对超声速叶栅气动性能影响的不确定性分析[J]. 航空动力学报, 2024, 39(X):20220791 doi: 10.13224/j.cnki.jasp.20220791
LIU Kaiye, CHU Wuli, GUO Zhengtao, et al. Uncertainty analysis of effects of manufacturing errors on aerodynamic performance of supersonic cascades[J]. Journal of Aerospace Power, 2024, 39(X):20220791 doi: 10.13224/j.cnki.jasp.20220791
Citation: LIU Kaiye, CHU Wuli, GUO Zhengtao, et al. Uncertainty analysis of effects of manufacturing errors on aerodynamic performance of supersonic cascades[J]. Journal of Aerospace Power, 2024, 39(X):20220791 doi: 10.13224/j.cnki.jasp.20220791

加工误差对超声速叶栅气动性能影响的不确定性分析

doi: 10.13224/j.cnki.jasp.20220791
基金项目: 国家科技重大专项(J2019-Ⅰ-0011)
详细信息
    作者简介:

    刘铠烨(1999-),男,硕士生,研究方向为叶轮机械气动热力学

    通讯作者:

    楚武利(1962-),男,教授、博士生导师,博士,研究领域为高性能轴流及离心压气机先进流动控制。E-mail:wlchu@nwpu.edu.cn

  • 中图分类号: V231.3

Uncertainty analysis of effects of manufacturing errors on aerodynamic performance of supersonic cascades

  • 摘要:

    为了研究法向加工误差对超声速叶栅气动性能的影响,基于高斯过程和主成分分析法,构建了由法向加工误差导致的叶表五维几何不确定性模型。采用基于高斯分布型的非嵌入式混沌多项式方法,结合稀疏网格技术,构建了叶栅性能的代理模型,并预测了加工误差对超声速叶栅气动性能的影响。研究中,还提出了一种量化叶栅流场各部分损失的损失源模型。结果表明:在随机加工误差影响下,超声速叶栅总压损失系数近似于正态分布。总压损失系数对前缘部分的加工误差最为敏感,对吸力面加工误差的敏感程度高于压力面加工误差,并且敏感性沿弦向位置向后逐渐递减。影响机理是,前缘加工误差会影响弓形激波强度以及前缘加速过程,从而影响槽道激波结并构造成叶栅损失出现较大偏差。

     

  • 图 1  法向加工误差示意图

    Figure 1.  Schematic of normal manufacturing error

    图 2  计算域和网格示意图

    Figure 2.  Schematic of computational domain and grid

    图 3  叶栅上游马赫数分布

    Figure 3.  Mach number in upstream of cascade

    图 4  不同网格数量对叶表等熵马赫数的影响

    Figure 4.  Effect of different mesh schemes on isentropic Mach number on blade surface

    图 5  叶栅波系结构

    Figure 5.  Shock wave pattern of cascade

    图 6  ARL-SL19叶栅“唯一攻角”曲线

    Figure 6.  Unique incidence curves of ARL-SL19 cascade

    图 7  损失源划分模型

    Figure 7.  Loss divided for loss sources analysis model

    图 8  不同h取值下特征值分布

    Figure 8.  Distribution of eigenvalue with different h

    图 9  累计方差贡献率分布

    Figure 9.  Distribution of cumulative variance contribution rate

    图 10  标准差函数以及均值函数分布

    Figure 10.  Distribution of standard deviation function and mean function

    图 11  叶表法向加工误差分布

    Figure 11.  Distribution of normal manufacturing error of blade profile

    图 12  总压损失系数计算值与预测值对比

    Figure 12.  Comparison of calculation and prediction results of total pressure loss coefficient

    图 13  总压损失系数统计直方图

    Figure 13.  Histogram of total pressure loss coefficient

    图 14  法向加工误差与总压损失系数敏感性分析

    Figure 14.  Sensitivity of normal manufacturing error to total pressure loss coefficient

    图 15  叶型型线对比

    Figure 15.  Comparison of cascade profile

    图 16  损失源分布对比

    Figure 16.  Comparison of loss sources

    图 17  波系结构对比

    Figure 17.  Comparison of shock wave patterns

    图 18  叶表摩擦系因对比

    Figure 18.  Comparison of wall friction factor on blade surface

    图 19  叶表等熵马赫数对比

    Figure 19.  Comparison of isentropic Mach number on blade surface

    表  1  稀疏网格和全网格配置点数

    Table  1.   Number of collocation points of sparse grid and full grid

    $ d $ k=2 k=3
    NSG NFG NSG NFG
    3 25 27 69 64
    5 61 243 241 1024
    8 145 6561 849 65536
    10 221 59049 1771 1048576
    下载: 导出CSV

    表  2  叶栅ARL-SL19几何参数

    Table  2.   Geometric features of ARL-SL19 cascade

    参数 数值
    弦长/mm 85
    稠度 1.53
    安装角/(°) 56.93
    下载: 导出CSV

    表  3  不同损失源的占比

    Table  3.   Loss source of different schemes

    损失源 占比/% 损失源 占比/%
    $ {\zeta _{{\mathrm{LE}}}} $ 14.8 $ {\zeta _{{\mathrm{1stshock}}}} $ 15.4
    $ {\zeta _{{\mathrm{BL}}}} $ 11.4 $ {\zeta _{{\mathrm{2ndshock}}}} $ 9.1
    $ {\zeta _{{\mathrm{SS}}}} $ 9.4 $ {\zeta _{{\mathrm{TE}}}} $ 14.8
    $ {\zeta _{{\mathrm{PS}}}} $ 2.3
    下载: 导出CSV

    表  4  总压损失系数不确定性量化统计结果

    Table  4.   Statistical outputs of uncertainty quantification of total pressure loss coefficient

    参数 数值
    均值 0.134262
    标准差 0.005722
    下载: 导出CSV
  • [1] GOODHAND M N,MILLER R J. The impact of real geometries on three-dimensional separations in compressors[J]. Journal of Turbomachinery,2012,134(2): 1.
    [2] LANGE A,VOGELER K,GU¨MMER V,et al. Introduction of a parameter based compressor blade model for considering measured geometry uncertainties in numerical simulation[C]//Proceedings of ASME Turbo Expo 2009: Power for Land,Sea,and Air,2010: 1113-1123.
    [3] LANGE A,VOIGT M,VOGELER K,et al. Impact of manufacturing variability on multistage high-pressure compressor performance[J]. Journal of Engineering for Gas Turbines and Power,2012,134(11): 1.
    [4] GARZON V E,DARMOFAL D L. Impact of geometric variability on axial compressor performance[R]. ASME GT 2003-38130,2003.
    [5] GARZON V E. Probabilistic aerothermal design of compressor airfoils[D]. Massachusetts,UK: Massachusetts Institute of Technology,2003.
    [6] GARZON V E,DARMOFAL D L. On the aerodynamic design of compressor airfoils for robustness under geometric uncertainty[R]. GT2004-53581,2004.
    [7] 陈为雄,王掩刚,马峰,等. 超声速来流基元叶型前缘加工误差气动敏感性分析[J]. 推进技术,2019,40(10): 2235-2242. CHEN Weixiong,WANG Yangang,MA Feng,et al. Aerodynamic sensitivity analysis of manufacturing errors for leading edge of supersonic elementary blade profile[J]. Journal of Propulsion Technology,2019,40(10): 2235-2242. (in Chinese

    CHEN Weixiong, WANG Yangang, MA Feng, et al. Aerodynamic sensitivity analysis of manufacturing errors for leading edge of supersonic elementary blade profile[J]. Journal of Propulsion Technology, 2019, 40(10): 2235-2242. (in Chinese)
    [8] 高丽敏,蔡宇桐,郝燕平,等. 加工误差对压气机叶片气动性能影响试验研究[J]. 推进技术,2017,38(8): 1761-1766. GAO Limin,CAI Yutong,HAO Yanping,et al. Experimental investigation on aerodynamic performance of compressor blade considering manufacturing error[J]. Journal of Propulsion Technology,2017,38(8): 1761-1766. (in Chinese

    GAO Limin, CAI Yutong, HAO Yanping, et al. Experimental investigation on aerodynamic performance of compressor blade considering manufacturing error[J]. Journal of Propulsion Technology, 2017, 38(8): 1761-1766. (in Chinese)
    [9] 李萍. 叶片加工误差及数据传递对压气机气动性能的影响[D]. 西安: 西北工业大学,2015. LI Ping. Effect of Blade Machining Error and Data Transfer on Compressor Aerodynamic Performance[D]. Xi’an: Northwestern Polytechnical University,2015. (in Chinese

    LI Ping. Effect of Blade Machining Error and Data Transfer on Compressor Aerodynamic Performance[D]. Xi’an: Northwestern Polytechnical University, 2015. (in Chinese)
    [10] 于贤君,庞健,刘宝杰. 低速模拟在叶型加工偏差影响研究的应用[J]. 工程热物理学报,2018,39(7): 1436-1446. YU Xianjun,PANG Jian,LIU Baojie. The application of low-speed simulation in researching the impact of blades manufacturing deviation on aerodynamic performance[J]. Journal of Engineering Thermophysics,2018,39(7): 1436-1446. (in Chinese

    YU Xianjun, PANG Jian, LIU Baojie. The application of low-speed simulation in researching the impact of blades manufacturing deviation on aerodynamic performance[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1436-1446. (in Chinese)
    [11] 刘佳鑫,于贤君,孟德君,等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报,2021,42(2): 423796. LIU Jiaxin,YU Xianjun,MENG Dejun,et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 423796. (in Chinese

    LIU Jiaxin, YU Xianjun, MENG Dejun, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 423796. (in Chinese)
    [12] 郭正涛,楚武利,晏松,等. 加工误差对压气机叶栅气动性能及稳定性影响的数据挖掘[J]. 推进技术,2022,43(3): 141-153. GUO Zhengtao,CHU Wuli,YAN Song,et al. Data mining on effects of manufacturing error on aerodynamic performance and stability of compressor cascade[J]. Journal of Propulsion Technology,2022,43(3): 141-153. (in Chinese

    GUO Zhengtao, CHU Wuli, YAN Song, et al. Data mining on effects of manufacturing error on aerodynamic performance and stability of compressor cascade[J]. Journal of Propulsion Technology, 2022, 43(3): 141-153. (in Chinese)
    [13] 郭正涛,楚武利,姬田园,等. 端壁倒圆半径误差对高负荷静叶栅性能影响的不确定性分析[J]. 航空动力学报,2021,36(10): 2173-2185. GUO Zhengtao,CHU Wuli,JI Tianyuan,et al. Uncertainty analysis of effects of end wall fillet radius error on high-load stator cascade performance[J]. Journal of Aerospace Power,2021,36(10): 2173-2185. (in Chinese

    GUO Zhengtao, CHU Wuli, JI Tianyuan, et al. Uncertainty analysis of effects of end wall fillet radius error on high-load stator cascade performance[J]. Journal of Aerospace Power, 2021, 36(10): 2173-2185. (in Chinese)
    [14] GUO Zhengtao,CHU Wuli,ZHANG Haoguang. A data-driven non-intrusive polynomial chaos for performance impact of high subsonic compressor cascades with stagger angle and profile errors[J]. Aerospace Science and Technology,2022,129: 107802. doi: 10.1016/j.ast.2022.107802
    [15] 李相君. 高负荷轴流压气机叶栅的角区失速及非轴对称端壁造型技术研究[D]. 西安: 西北工业大学,2014. LI Xiangjun. Investigation of corner stall and the corresponding non-axisymmetric profiled endwall in a high-loaded compressor cascade[D]. Xi’an: Northwestern Polytechnical University,2014. (in Chinese

    LI Xiangjun. Investigation of corner stall and the corresponding non-axisymmetric profiled endwall in a high-loaded compressor cascade[D]. Xi’an: Northwestern Polytechnical University, 2014. (in Chinese)
    [16] 李相君,楚武利,张皓光. 高负荷轴流压气机叶栅二次流动与损失关联性探讨[J]. 推进技术,2014,35(7): 914-925. LI Xiangjun,CHU Wuli,ZHANG Haoguang. Investigation on relation between secondary flow and loss on a high loaded axial-flow compressor cascade[J]. Journal of Propulsion Technology,2014,35(7): 914-925. (in Chinese

    LI Xiangjun, CHU Wuli, ZHANG Haoguang. Investigation on relation between secondary flow and loss on a high loaded axial-flow compressor cascade[J]. Journal of Propulsion Technology, 2014, 35(7): 914-925. (in Chinese)
    [17] LIU Baojie,SHI Hengtao,YU Xianjun. A new method for rapid shock loss evaluation and reduction for the optimization design of a supersonic compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers,Part G: Journal of Aerospace Engineering,2018,232(13): 2458-2476.
    [18] WANG Xiaojing,ZOU Zhengping. Uncertainty analysis of impact of geometric variations on turbine blade performance[J]. Energy,2019,176: 67-80. doi: 10.1016/j.energy.2019.03.140
    [19] LANGE A,VOIGT M,VOGELER K,et al. Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation[R]. AIAA2012-1762,2012.
    [20] DOW E A,WANG Qiqi. Simultaneous robust design and tolerancing of compressor blades[R]. ASME GT 2014-25795,2014.
    [21] SCHNELL R,LENGYEL-KAMPMANN T,NICKE E. On the impact of geometric variability on fan aerodynamic performance,unsteady blade row interaction,and its mechanical characteristics[J]. Journal of Turbomachinery,2014,136(9): 091005. doi: 10.1115/1.4027218
    [22] 姬田园,楚武利,戴雨晨,等. 叶顶间隙偏差对叶片气动性能影响的不确定性研究[J]. 推进技术,2022,43(10): 134-146. JI Tianyuan,CHU Wuli,DAI Yuchen,et al. Uncertainty research of effects of blade tip clearance deviation on blade aerodynamic performance[J]. Journal of Propulsion Technology,2022,43(10): 134-146. (in Chinese

    JI Tianyuan, CHU Wuli, DAI Yuchen, et al. Uncertainty research of effects of blade tip clearance deviation on blade aerodynamic performance[J]. Journal of Propulsion Technology, 2022, 43(10): 134-146. (in Chinese)
    [23] 李玉,楚武利,姬田园. 叶片安装角偏差对动叶性能影响的不确定性研究[J/OL]. 西安交通大学学报 2023,(04),2022: 1-11. (2022-09-19). https://kns.cnki.net/kcms/detail/61.1069.t.20220916.1344.002.html. LI Yu,CHU Wuli,JI Tianyuan. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J/OL]. Journal of Xi’an Jiaotong University,2022: 1-11. (2022-09-19). https://kns.cnki.net/kcms/detail/61.1069.t.20220916.1344.002.html. (in Chinese

    LI Yu, CHU Wuli, JI Tianyuan. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J/OL]. Journal of Xi’an Jiaotong University, 2022: 1-11. (2022-09-19). https://kns.cnki.net/kcms/detail/61.1069.t.20220916.1344.002.html. (in Chinese)
    [24] WUNSCH D,HIRSCH C,NIGRO R,et al. Quantification of combined operational and geometrical uncertainties in turbo-machinery design[R]. ASME GT 2015-43399,2015.
    [25] 颜勇,祝培源,宋立明,等. 基于非平稳高斯过程的叶栅加工误差不确定性量化[J]. 推进技术,2017,38(8): 1767-1775. YAN Yong,ZHU Peiyuan,SONG Liming,et al. Uncertainty quantification of cascade manufacturing error based non-stationary Gaussian process[J]. Journal of Propulsion Technology,2017,38(8): 1767-1775. (in Chinese

    YAN Yong, ZHU Peiyuan, SONG Liming, et al. Uncertainty quantification of cascade manufacturing error based non-stationary Gaussian process[J]. Journal of Propulsion Technology, 2017, 38(8): 1767-1775. (in Chinese)
    [26] TWEEDT D L,SCHREIBER H A,STARKEN H. Experimental investigation of the performance of a supersonic compressor cascade[J]. Journal of Turbomachinery,1988,110(4): 456-466. doi: 10.1115/1.3262219
    [27] 韩露. 宽裕度高效率超音压气机叶型优化设计[D]. 南京: 南京航空航天大学,2020. HAN Lu. Wide Stability Margin & High Efficiency Aerodynamic Optimization Design of Supersonic Compressor Profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2020. (in Chinese

    HAN Lu. Wide Stability Margin & High Efficiency Aerodynamic Optimization Design of Supersonic Compressor Profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
    [28] CASONI M,MAGRINI A,BENINI E. Supersonic compressor cascade shape optimization under multiple inlet Mach operating conditions[J]. Aerospace,2019,6(6): 64. doi: 10.3390/aerospace6060064
    [29] 张疏影,周玲,季路成. 通道参数对超声速叶栅性能的影响[J]. 航空动力学报,2022,37(4): 836-847. ZHANG Shuying,ZHOU Ling,JI Lucheng. Effects of passage parameters on performance of supersonic cascade[J]. Journal of Aerospace Power,2022,37(4): 836-847. (in Chinese

    ZHANG Shuying, ZHOU Ling, JI Lucheng. Effects of passage parameters on performance of supersonic cascade[J]. Journal of Aerospace Power, 2022, 37(4): 836-847. (in Chinese)
    [30] 盛佳明,张海灯,吴云,等. 电弧放电等离子体激励控制超声速压气机叶栅激波/边界层干扰仿真研究[J]. 推进技术,2020,41(10): 2228-2236. SHENG Jiaming,ZHANG Haideng,WU Yun,et al. Simulation study of arc discharge plasma actuator for supersonic compressor cascade shock wave/boundary layer interaction control[J]. Journal of Propulsion Technology,2020,41(10): 2228-2236. (in Chinese

    SHENG Jiaming, ZHANG Haideng, WU Yun, et al. Simulation study of arc discharge plasma actuator for supersonic compressor cascade shock wave/boundary layer interaction control[J]. Journal of Propulsion Technology, 2020, 41(10): 2228-2236. (in Chinese)
    [31] PIOVESAN T,MAGRINI A,BENINI E. Accurate 2-D modelling of transonic compressor cascade aerodynamics[J]. Aerospace,2019,6(5): 57. doi: 10.3390/aerospace6050057
    [32] 中国航空工业总公司. 叶片叶型的标注、公差与叶身表面粗糙度: HB 5647-98[S]. 北京: 中国航空工业总公司三〇一研究所,1999.
    [33] 王小京,邹正平. 整级环境下涡轮叶片型面加工几何偏差影响的不确定性分析[J]. 推进技术,2022,43(3): 112-119. WANG Xiaojing,ZOU Zhengping. Uncertainty analysis of impact of profile geometric manufacture variations on turbine blade performance in stage environment[J]. Journal of Propulsion Technology,2022,43(3): 112-119. (in Chinese

    WANG Xiaojing, ZOU Zhengping. Uncertainty analysis of impact of profile geometric manufacture variations on turbine blade performance in stage environment[J]. Journal of Propulsion Technology, 2022, 43(3): 112-119. (in Chinese)
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  11
  • HTML浏览量:  7
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 网络出版日期:  2024-04-26

目录

    /

    返回文章
    返回