Uncertainty analysis of effects of manufacturing errors on aerodynamic performance of supersonic cascades
-
摘要:
为了研究法向加工误差对超声速叶栅气动性能的影响,基于高斯过程和主成分分析法,构建了由法向加工误差导致的叶表五维几何不确定性模型。采用基于高斯分布型的非嵌入式混沌多项式方法,结合稀疏网格技术,构建了叶栅性能的代理模型,并预测了加工误差对超声速叶栅气动性能的影响。研究中,还提出了一种量化叶栅流场各部分损失的损失源模型。结果表明:在随机加工误差影响下,超声速叶栅总压损失系数近似于正态分布。总压损失系数对前缘部分的加工误差最为敏感,对吸力面加工误差的敏感程度高于压力面加工误差,并且敏感性沿弦向位置向后逐渐递减。影响机理是,前缘加工误差会影响弓形激波强度以及前缘加速过程,从而影响槽道激波结并构造成叶栅损失出现较大偏差。
Abstract:To study the effects of normal manufacturing error on the aerodynamic performance of supersonic cascade, a model of five-dimensional blade surface geometric variability from normal manufacturing errors was constructed based on Gaussian process and principal component analysis. Combined with the non-intrusive polynomial chaos expansion based on Gaussian distribution and the sparse grid technique, a surrogate mode of cascade performance was proposed. Then, the effects of manufacturing error on the aerodynamic performance of supersonic cascade were predicted by the surrogate model. A loss source model was also proposed to quantify the loss of each part of cascade flow field. The results showed that the total pressure loss coefficient of supersonic cascade was approximately normal distribution under the effects of random manufacturing error. The total pressure loss coefficient was most sensitive to the manufacturing error of the leading edge, and more sensitive to the manufacturing error of the suction surface than to the manufacturing error of the pressure surface, and the sensitivity gradually decreased backward along the chord. According to the mechanism, the leading edge manufacturing error may affect the bow shock wave strength and the leading edge acceleration process, thus affecting the passage shock pattern and forming a cascade loss with a large deviation.
-
表 1 稀疏网格和全网格配置点数
Table 1. Number of collocation points of sparse grid and full grid
$ d $ k=2 k=3 NSG NFG NSG NFG 3 25 27 69 64 5 61 243 241 1024 8 145 6561 849 65536 10 221 59049 1771 1048576 表 2 叶栅ARL-SL19几何参数
Table 2. Geometric features of ARL-SL19 cascade
参数 数值 弦长/mm 85 稠度 1.53 安装角/(°) 56.93 表 3 不同损失源的占比
Table 3. Loss source of different schemes
损失源 占比/% 损失源 占比/% $ {\zeta _{{\mathrm{LE}}}} $ 14.8 $ {\zeta _{{\mathrm{1stshock}}}} $ 15.4 $ {\zeta _{{\mathrm{BL}}}} $ 11.4 $ {\zeta _{{\mathrm{2ndshock}}}} $ 9.1 $ {\zeta _{{\mathrm{SS}}}} $ 9.4 $ {\zeta _{{\mathrm{TE}}}} $ 14.8 $ {\zeta _{{\mathrm{PS}}}} $ 2.3 表 4 总压损失系数不确定性量化统计结果
Table 4. Statistical outputs of uncertainty quantification of total pressure loss coefficient
参数 数值 均值 0.134262 标准差 0.005722 -
[1] GOODHAND M N,MILLER R J. The impact of real geometries on three-dimensional separations in compressors[J]. Journal of Turbomachinery,2012,134(2): 1. [2] LANGE A,VOGELER K,GÜMMER V,et al. Introduction of a parameter based compressor blade model for considering measured geometry uncertainties in numerical simulation[C]//Proceedings of ASME Turbo Expo 2009: Power for Land,Sea,and Air,2010: 1113-1123. [3] LANGE A,VOIGT M,VOGELER K,et al. Impact of manufacturing variability on multistage high-pressure compressor performance[J]. Journal of Engineering for Gas Turbines and Power,2012,134(11): 1. [4] GARZON V E,DARMOFAL D L. Impact of geometric variability on axial compressor performance[R]. ASME GT 2003-38130,2003. [5] GARZON V E. Probabilistic aerothermal design of compressor airfoils[D]. Massachusetts,UK: Massachusetts Institute of Technology,2003. [6] GARZON V E,DARMOFAL D L. On the aerodynamic design of compressor airfoils for robustness under geometric uncertainty[R]. GT2004-53581,2004. [7] 陈为雄,王掩刚,马峰,等. 超声速来流基元叶型前缘加工误差气动敏感性分析[J]. 推进技术,2019,40(10): 2235-2242. CHEN Weixiong,WANG Yangang,MA Feng,et al. Aerodynamic sensitivity analysis of manufacturing errors for leading edge of supersonic elementary blade profile[J]. Journal of Propulsion Technology,2019,40(10): 2235-2242. (in ChineseCHEN Weixiong, WANG Yangang, MA Feng, et al. Aerodynamic sensitivity analysis of manufacturing errors for leading edge of supersonic elementary blade profile[J]. Journal of Propulsion Technology, 2019, 40(10): 2235-2242. (in Chinese) [8] 高丽敏,蔡宇桐,郝燕平,等. 加工误差对压气机叶片气动性能影响试验研究[J]. 推进技术,2017,38(8): 1761-1766. GAO Limin,CAI Yutong,HAO Yanping,et al. Experimental investigation on aerodynamic performance of compressor blade considering manufacturing error[J]. Journal of Propulsion Technology,2017,38(8): 1761-1766. (in ChineseGAO Limin, CAI Yutong, HAO Yanping, et al. Experimental investigation on aerodynamic performance of compressor blade considering manufacturing error[J]. Journal of Propulsion Technology, 2017, 38(8): 1761-1766. (in Chinese) [9] 李萍. 叶片加工误差及数据传递对压气机气动性能的影响[D]. 西安: 西北工业大学,2015. LI Ping. Effect of blade machining error and data transfer on compressor aerodynamic performance[D]. Xi’an: Northwestern Polytechnical University,2015. (in ChineseLI Ping. Effect of blade machining error and data transfer on compressor aerodynamic performance[D]. Xi’an: Northwestern Polytechnical University, 2015. (in Chinese) [10] 于贤君,庞健,刘宝杰. 低速模拟在叶型加工偏差影响研究的应用[J]. 工程热物理学报,2018,39(7): 1436-1446. YU Xianjun,PANG Jian,LIU Baojie. The application of low-speed simulation in researching the impact of blades manufacturing deviation on aerodynamic performance[J]. Journal of Engineering Thermophysics,2018,39(7): 1436-1446. (in ChineseYU Xianjun, PANG Jian, LIU Baojie. The application of low-speed simulation in researching the impact of blades manufacturing deviation on aerodynamic performance[J]. Journal of Engineering Thermophysics, 2018, 39(7): 1436-1446. (in Chinese) [11] 刘佳鑫,于贤君,孟德君,等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报,2021,42(2): 423796. LIU Jiaxin,YU Xianjun,MENG Dejun,et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 423796. (in ChineseLIU Jiaxin, YU Xianjun, MENG Dejun, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 423796. (in Chinese) [12] 郭正涛,楚武利,晏松,等. 加工误差对压气机叶栅气动性能及稳定性影响的数据挖掘[J]. 推进技术,2022,43(3): 141-153. GUO Zhengtao,CHU Wuli,YAN Song,et al. Data mining on effects of manufacturing error on aerodynamic performance and stability of compressor cascade[J]. Journal of Propulsion Technology,2022,43(3): 141-153. (in ChineseGUO Zhengtao, CHU Wuli, YAN Song, et al. Data mining on effects of manufacturing error on aerodynamic performance and stability of compressor cascade[J]. Journal of Propulsion Technology, 2022, 43(3): 141-153. (in Chinese) [13] 郭正涛,楚武利,姬田园,等. 端壁倒圆半径误差对高负荷静叶栅性能影响的不确定性分析[J]. 航空动力学报,2021,36(10): 2173-2185. GUO Zhengtao,CHU Wuli,JI Tianyuan,et al. Uncertainty analysis of effects of end wall fillet radius error on high-load stator cascade performance[J]. Journal of Aerospace Power,2021,36(10): 2173-2185. (in ChineseGUO Zhengtao, CHU Wuli, JI Tianyuan, et al. Uncertainty analysis of effects of end wall fillet radius error on high-load stator cascade performance[J]. Journal of Aerospace Power, 2021, 36(10): 2173-2185. (in Chinese) [14] GUO Zhengtao,CHU Wuli,ZHANG Haoguang. A data-driven non-intrusive polynomial chaos for performance impact of high subsonic compressor cascades with stagger angle and profile errors[J]. Aerospace Science and Technology,2022,129: 107802. doi: 10.1016/j.ast.2022.107802 [15] 李相君. 高负荷轴流压气机叶栅的角区失速及非轴对称端壁造型技术研究[D]. 西安: 西北工业大学,2014. LI Xiangjun. Investigation of corner stall and the corresponding non-axisymmetric profiled endwall in a high-loaded compressor cascade[D]. Xi’an: Northwestern Polytechnical University,2014. (in ChineseLI Xiangjun. Investigation of corner stall and the corresponding non-axisymmetric profiled endwall in a high-loaded compressor cascade[D]. Xi’an: Northwestern Polytechnical University, 2014. (in Chinese) [16] 李相君,楚武利,张皓光. 高负荷轴流压气机叶栅二次流动与损失关联性探讨[J]. 推进技术,2014,35(7): 914-925. LI Xiangjun,CHU Wuli,ZHANG Haoguang. Investigation on relation between secondary flow and loss on a high loaded axial-flow compressor cascade[J]. Journal of Propulsion Technology,2014,35(7): 914-925. (in ChineseLI Xiangjun, CHU Wuli, ZHANG Haoguang. Investigation on relation between secondary flow and loss on a high loaded axial-flow compressor cascade[J]. Journal of Propulsion Technology, 2014, 35(7): 914-925. (in Chinese) [17] LIU Baojie,SHI Hengtao,YU Xianjun. A new method for rapid shock loss evaluation and reduction for the optimization design of a supersonic compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2018,232(13): 2458-2476. [18] WANG Xiaojing,ZOU Zhengping. Uncertainty analysis of impact of geometric variations on turbine blade performance[J]. Energy,2019,176: 67-80. doi: 10.1016/j.energy.2019.03.140 [19] LANGE A,VOIGT M,VOGELER K,et al. Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation[R]. AIAA2012-1762,2012. [20] DOW E A,WANG Qiqi. Simultaneous robust design and tolerancing of compressor blades[R]. ASME GT 2014-25795,2014. [21] SCHNELL R,LENGYEL-KAMPMANN T,NICKE E. On the impact of geometric variability on fan aerodynamic performance,unsteady blade row interaction,and its mechanical characteristics[J]. Journal of Turbomachinery,2014,136(9): 091005. doi: 10.1115/1.4027218 [22] 姬田园,楚武利,戴雨晨,等. 叶顶间隙偏差对叶片气动性能影响的不确定性研究[J]. 推进技术,2022,43(10): 134-146. JI Tianyuan,CHU Wuli,DAI Yuchen,et al. Uncertainty research of effects of blade tip clearance deviation on blade aerodynamic performance[J]. Journal of Propulsion Technology,2022,43(10): 134-146. (in ChineseJI Tianyuan, CHU Wuli, DAI Yuchen, et al. Uncertainty research of effects of blade tip clearance deviation on blade aerodynamic performance[J]. Journal of Propulsion Technology, 2022, 43(10): 134-146. (in Chinese) [23] 李玉,楚武利,姬田园. 叶片安装角偏差对动叶性能影响的不确定性研究[J]. 西安交通大学学报,2023,57(4): 49-59. LI Yu,CHU Wuli,JI Tianyuan. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J]. Journal of Xi’an Jiaotong University,2023,57(4): 49-59. (in ChineseLI Yu, CHU Wuli, JI Tianyuan. Uncertainty research of effects of blade stagger angle deviation on the performance of rotor[J]. Journal of Xi’an Jiaotong University, 2023, 57(4): 49-59. (in Chinese) [24] WUNSCH D,HIRSCH C,NIGRO R,et al. Quantification of combined operational and geometrical uncertainties in turbo-machinery design[R]. ASME GT 2015-43399,2015. [25] 颜勇,祝培源,宋立明,等. 基于非平稳高斯过程的叶栅加工误差不确定性量化[J]. 推进技术,2017,38(8): 1767-1775. YAN Yong,ZHU Peiyuan,SONG Liming,et al. Uncertainty quantification of cascade manufacturing error based non-stationary Gaussian process[J]. Journal of Propulsion Technology,2017,38(8): 1767-1775. (in ChineseYAN Yong, ZHU Peiyuan, SONG Liming, et al. Uncertainty quantification of cascade manufacturing error based non-stationary Gaussian process[J]. Journal of Propulsion Technology, 2017, 38(8): 1767-1775. (in Chinese) [26] TWEEDT D L,SCHREIBER H A,STARKEN H. Experimental investigation of the performance of a supersonic compressor cascade[J]. Journal of Turbomachinery,1988,110(4): 456-466. doi: 10.1115/1.3262219 [27] 韩露. 宽裕度高效率超音压气机叶型优化设计[D]. 南京: 南京航空航天大学,2020. HAN Lu. Wide stability margin & high efficiency aerodynamic optimization design of supersonic compressor profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2020. (in ChineseHAN Lu. Wide stability margin & high efficiency aerodynamic optimization design of supersonic compressor profile[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese) [28] CASONI M,MAGRINI A,BENINI E. Supersonic compressor cascade shape optimization under multiple inlet Mach operating conditions[J]. Aerospace,2019,6(6): 64. doi: 10.3390/aerospace6060064 [29] 张疏影,周玲,季路成. 通道参数对超声速叶栅性能的影响[J]. 航空动力学报,2022,37(4): 836-847. ZHANG Shuying,ZHOU Ling,JI Lucheng. Effects of passage parameters on performance of supersonic cascade[J]. Journal of Aerospace Power,2022,37(4): 836-847. (in ChineseZHANG Shuying, ZHOU Ling, JI Lucheng. Effects of passage parameters on performance of supersonic cascade[J]. Journal of Aerospace Power, 2022, 37(4): 836-847. (in Chinese) [30] 盛佳明,张海灯,吴云,等. 电弧放电等离子体激励控制超声速压气机叶栅激波/边界层干扰仿真研究[J]. 推进技术,2020,41(10): 2228-2236. SHENG Jiaming,ZHANG Haideng,WU Yun,et al. Simulation study of arc discharge plasma actuator for supersonic compressor cascade shock wave/boundary layer interaction control[J]. Journal of Propulsion Technology,2020,41(10): 2228-2236. (in ChineseSHENG Jiaming, ZHANG Haideng, WU Yun, et al. Simulation study of arc discharge plasma actuator for supersonic compressor cascade shock wave/boundary layer interaction control[J]. Journal of Propulsion Technology, 2020, 41(10): 2228-2236. (in Chinese) [31] PIOVESAN T,MAGRINI A,BENINI E. Accurate 2-D modelling of transonic compressor cascade aerodynamics[J]. Aerospace,2019,6(5): 57. doi: 10.3390/aerospace6050057 [32] 中国航空工业总公司. 叶片叶型的标注、公差与叶身表面粗糙度: HB 5647-98[S]. 北京: 中国航空工业总公司三〇一研究所,1999. [33] 王小京,邹正平. 整级环境下涡轮叶片型面加工几何偏差影响的不确定性分析[J]. 推进技术,2022,43(3): 112-119. WANG Xiaojing,ZOU Zhengping. Uncertainty analysis of impact of profile geometric manufacture variations on turbine blade performance in stage environment[J]. Journal of Propulsion Technology,2022,43(3): 112-119. (in ChineseWANG Xiaojing, ZOU Zhengping. Uncertainty analysis of impact of profile geometric manufacture variations on turbine blade performance in stage environment[J]. Journal of Propulsion Technology, 2022, 43(3): 112-119. (in Chinese) -