留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对转螺旋桨流场和声场数值模拟研究

李光明 丁珏 陈正武 仝帆 杨小权 唐小龙

李光明, 丁珏, 陈正武, 等. 对转螺旋桨流场和声场数值模拟研究[J]. 航空动力学报, 2024, 39(X):20220793 doi: 10.13224/j.cnki.jasp.20220793
引用本文: 李光明, 丁珏, 陈正武, 等. 对转螺旋桨流场和声场数值模拟研究[J]. 航空动力学报, 2024, 39(X):20220793 doi: 10.13224/j.cnki.jasp.20220793
LI Guangming, DING Jue, CHEN Zhengwu, et al. Research on numerical simulation of flow field and sound field of counter-rotating propeller[J]. Journal of Aerospace Power, 2024, 39(X):20220793 doi: 10.13224/j.cnki.jasp.20220793
Citation: LI Guangming, DING Jue, CHEN Zhengwu, et al. Research on numerical simulation of flow field and sound field of counter-rotating propeller[J]. Journal of Aerospace Power, 2024, 39(X):20220793 doi: 10.13224/j.cnki.jasp.20220793

对转螺旋桨流场和声场数值模拟研究

doi: 10.13224/j.cnki.jasp.20220793
基金项目: 国家自然科学基金项目(12102451,11802114,12072186);气动院气动噪声重点实验室(XFX20220201)
详细信息
    作者简介:

    李光明(1998−),男,硕士生,主要从事气动声学方面的研究

    通讯作者:

    陈正武(1981−),男,副研究员,硕士,主要研究方向为气动声学和声学信号处理。E-mail: chenzhengwu001@163.com

  • 中图分类号: V211.3

Research on numerical simulation of flow field and sound field of counter-rotating propeller

  • 摘要:

    采用非线性谐波法耦合FW-H方程的混合噪声数值模拟方法,对某11×9的对转螺旋桨模型的气动力与噪声开展了数值模拟研究。结果表明:在起飞阶段,与单转子螺旋桨相比,对转螺旋桨的主要噪声源是由前排螺旋桨产生的叶尖涡、前缘涡和尾迹涡等涡系与后排螺旋桨相互作用产生的干涉噪声,后排螺旋桨上的非定常压力波动是干涉噪声的主要贡献源;在干涉噪声频率处,前排螺旋桨的噪声主要向下游辐射,后排螺旋桨的噪声主要向上游辐射。此外,还研究了不同积分面对对转螺旋桨噪声计算结果的影响。相比于固体壁面FW-H积分面,可穿透FW-H积分面的计算结果更接近试验数据,但是不同的积分面对转子单独噪声基本没有影响;上游积分面的变化对对转螺旋桨的噪声影响很小,但是下游积分面的变化对干涉噪声影响较大。

     

  • 图 1  对转螺旋桨的配置和几何布局

    Figure 1.  Contra rotating propeller configuration and geometric layout

    图 2  计算域

    Figure 2.  computational domain

    图 3  B2B面网格

    Figure 3.  B2B view of mesh

    图 4  固体壁面网格

    Figure 4.  Mesh on solid surfaces

    图 5  前排螺旋桨50%叶高处表面静压

    Figure 5.  Surface static pressure at 50% blade height of front propeller

    图 6  固体壁面边界条件

    Figure 6.  Boundary conditions on solid surfaces

    图 7  噪声的数值模拟结果与文献[11]结果对比

    Figure 7.  Comparison of numerical simulation results with literature [11] results of noise

    图 8  对转螺旋桨气动性能

    Figure 8.  Contra-rotating propeller aerodynamic performance

    图 9  子午面流线及马赫数云图

    Figure 9.  Streamline and Mach number contour in a meridional plane

    图 10  单转子螺旋桨和对转螺旋桨不同截面位置示意图

    Figure 10.  Schematic diagram of different cross-section position of single rotor propeller and counter-rotating propeller

    图 11  单转子螺旋桨和对转螺旋桨轴向时均速度的径向分布

    Figure 11.  Time-averaged axial and radial velocity profiles of single rotor propeller and counter-rotating propeller

    图 12  单转子螺旋桨和对转螺旋桨径向时均速度的径向分布

    Figure 12.  Time-averaged radial velocity profiles of single rotor propeller and counter-rotating propeller

    图 13  叶片吸力面流线

    Figure 13.  Blade suction surface streamline

    图 14  轴向方向涡量云图

    Figure 14.  Axial vorticity contour

    图 15  前排叶片吸力面和压力面压力系数云图

    Figure 15.  Pressure coefficient contour of suction and pressure surfaces of front blades

    图 16  后排叶片吸力面压力系数云图

    Figure 16.  Pressure coefficient contour of suction surface of rear blades

    图 17  不同叶高处叶片表面压力系数分布

    Figure 17.  Surface pressure coefficient at different blade heights

    图 18  前排螺旋桨后Z/R=0.15和Z/R=0.3截面及速度云图

    Figure 18.  Z/R=0.15 and Z/R=0.3 cross-section and velocity contour after front propeller

    图 19  Z/R=0.15处不同时刻静压云图

    Figure 19.  Static pressure contour at Z/R=0.15 at different moments

    图 20  不同叶高处熵云图

    Figure 20.  Entropy contour at different blade heights

    图 21  前排螺旋桨叶尖涡系与后排螺旋桨相互作用

    Figure 21.  Interaction between tip vortex system of front propeller and rear propeller

    图 22  前、后排转子和轮毂表面静压及一阶谐波压力云图

    Figure 22.  Static pressure and first-order harmonic pressure contours of front and rear rotors and hub surface

    图 23  传声器布置

    Figure 23.  Polar microphones array

    图 24  单转子螺旋桨噪声频谱

    Figure 24.  Single rotor propeller noise spectrum

    图 25  对转螺旋桨噪声频谱

    Figure 25.  Contra rotating propeller nosie spectrum

    图 26  BPF1和BPF2处前排螺旋桨、后排螺旋桨和对转螺旋桨噪声指向性

    Figure 26.  Acoustic directivity of front and rear propellers and counter-rotating propeller at BPF1 and BPF2

    图 27  BPF1+BPF2和2BPF1+BPF2处前排螺旋桨、后排螺旋桨和对转螺旋桨噪声指向性

    Figure 27.  Acoustic directivity of front and rear propellers and counter-rotating propeller at BPF1+BPF2 and 2BPF1+BPF2

    图 28  不同积分面示意图

    Figure 28.  Schematic diagram of different integral surfaces

    图 29  BPF1和BPF2处不同积分面的噪声指向性

    Figure 29.  Acoustic directivity of different integral surface at BPF1 and BPF2

    图 30  BPF1+BPF2处(2553.63 Hz)不同积分面噪声指向性

    Figure 30.  Acoustic directivity of different integral surface at BPF1+BPF2 (2553.63 Hz)

    图 31  2BPF1+BPF2处(3953.01 Hz)不同积分面噪声指向性

    Figure 31.  Different integral surface acoustic directivity at 2BPF1+BPF2 (3953.01 Hz)

    表  1  对转螺旋桨的设计参数

    Table  1.   Contra rotating propeller design parameters

    参数 数值
    前排螺旋桨 后排螺旋桨
    直径D/m 0.616 0.606
    叶片数 11 9
    转速/(r/min) −7633 7695
    轮毂比 0.59 0.56
    下载: 导出CSV

    表  2  网格无关性验证

    Table  2.   Mesh independence verification

    网格前排
    推力/N
    后排
    推力/N
    前排
    误差/%
    后排
    误差/%
    粗糙网格
    (500万)
    1514.71221.31.102.80
    中等网格
    (790万)
    1488.31200.60.061.00
    精细网格
    (1250万)
    1497.11188.0
    超精细网格
    (1975万)
    1490.01183.50.040.38
    下载: 导出CSV

    表  3  推力的数值模拟结果与文献[11]结果的对比

    Table  3.   Comparison of numerical simulation results with literature [11] results of thrust

    项目文献[11]结果/N数值模拟结果/N误差/%
    前排推力156814974.5
    后排推力122011882.6
    下载: 导出CSV
  • [1] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006.
    [2] HANGER R D. Advanced turboprop project[R]. Washington,US: Scientific and Technical Information Division,National Aeronautics and Space Administration,1988.
    [3] 严成忠. 开式转子发动机[M]. 北京: 航空工业出版社,2016.
    [4] WOODWARD,RICHARD P. Noise of two high-speed model counter-rotation peopeller at takeoff/approach conditions[J]. Journal of Aircraft,1992,29(4): 679-685. doi: 10.2514/3.46219
    [5] DITTMAR J H,STANG D B. Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter[R]. NASA-TM-88936,1987.
    [6] DITTMAR J H,GORDON E B,JERACKI R J. The effect of front-to-rear propeller spacing on the interaction noise at cruise conditions of a model counter rotation propeller having a reduced diameter aft propeller[R]. No. NASA-TM-101329,1988.
    [7] VAN ZANTE D E,ENVIA E. Prediction of the aero-acoustic performance of open rotors[R]. ASME GT2014-26413,2014.
    [8] HANSON D B. Helicoidal surface theory for harmonic noise of propellers in the far field[J]. AIAA Journal,1980,18(10): 1213-1220. doi: 10.2514/3.50873
    [9] HANSON D B. Near-field frequency-domain theory for propeller noise[J]. AIAA Journal,1985,23(4): 499-504. doi: 10.2514/3.8943
    [10] HANSON D B. Noise of counter-rotation propellers[J]. Journal of Aircraft,1985,22(7): 609-617. doi: 10.2514/3.45173
    [11] FERRANTE P,DI FRANCESCANTONIO P,HOFFER P A,et al. Integrated “CFD - acoustic” computational approach to the simulation of aircraft fan noise[R]. ASME GT2014-26429,2014.
    [12] DECONINCK T,CAPRON A,HIRSCH C,et al. Prediction of near-and far-field noise generated by contra-rotating open rotors[J]. International Journal of Aeroacoustics,2012,11(2): 177-196. doi: 10.1260/1475-472X.11.2.177
    [13] COLIN Y,CARAZO A,CARUELLE B,et al. Computational strategy for predicting CROR noise at low-speed Part I: review of the numerical methods[R]. AIAA2012-2221,2012.
    [14] COLIN Y,CARUELLE B,PARRY A B. Computational strategy for predicting CROR noise at low-speed Part III: investigation of noise radiation with the Ffowcs-Williams Hawkings analogy[R]. AIAA2012-2223,2012.
    [15] PETERS A,SPAKOVSZKY Z S. Rotor interaction noise in counter-rotating propfan propulsion systems[J]. Journal of Turbomachinery,2012,134(1): 1.
    [16] SPALART P,TRAVIN A,SHUR M,et al. Initial noise predictions for open rotors using first principles[R]. AIAA2010-3793,2010.
    [17] SMITH D A,FILIPPONE A,BARAKO G N. Noise source analysis in counter rotating open rotors[J]. AIAA Journal,2022,60(3): 1783-1796. doi: 10.2514/1.J060886
    [18] STUERMER A,YIN Jianping. Installation impact on pusher CROR engine low speed performance and noise emission characteristics[J]. International Journal of Engineering Systems Modelling and Simulation,2012,4(1/2): 59. doi: 10.1504/IJESMS.2012.044844
    [19] 孙晓峰,胡宗安. 桨扇的气动弹性力学和气动声学[J]. 航空动力学报,1987,2(4): 299-302,368. SUN Xiaofeng,HU Zongan. On aeroelasticity and aeroacoustics of propfan[J]. Journal of Aerospace Power,1987,2(4): 299-302,368. (in Chinese

    SUN Xiaofeng, HU Zongan. On aeroelasticity and aeroacoustics of propfan[J]. Journal of Aerospace Power, 1987, 2(4): 299-302, 368. (in Chinese)
    [20] 李晓东,孙晓峰,胡宗安,等. 考虑飞机舱壁影响的螺旋桨声场时域预测法[J]. 航空学报,1993,14(11): A585-A591. LI Xiaodong,SUN Xiaofeng,HU Zongan,et al. A time domain method for propeller noise prediction including aircraft fuselage effect[J]. Acta Aeronautica et Astronautica Sinica,1993,14(11): A585-A591. (in Chinese

    LI Xiaodong, SUN Xiaofeng, HU Zongan, et al. A time domain method for propeller noise prediction including aircraft fuselage effect[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(11): A585-A591. (in Chinese)
    [21] 夏贞锋,杨永. 对转开式转子非定常气动干扰特性分析[J]. 航空动力学报,2014,29(4): 835-843. XIA Zhenfeng,YANG Yong. Characteristic analysis of unsteady aerodynamic interactions of contra rotating open rotor[J]. Journal of Aerospace Power,2014,29(4): 835-843. (in Chinese

    XIA Zhenfeng, YANG Yong. Characteristic analysis of unsteady aerodynamic interactions of contra rotating open rotor[J]. Journal of Aerospace Power, 2014, 29(4): 835-843. (in Chinese)
    [22] 史文博,李杰. 对转螺旋桨流场气动干扰数值模拟[J]. 航空动力学报,2019,34(4): 829-837. SHI Wenbo,LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power,2019,34(4): 829-837. (in Chinese

    SHI Wenbo, LI Jie. Numerical simulation of contra-rotating propeller flowfield aerodynamic interactions[J]. Journal of Aerospace Power, 2019, 34(4): 829-837. (in Chinese)
    [23] 王靖元,单鹏,周亦成. 浸入式贴体网格边界方法的对转桨扇非定常流动数值模拟[J]. 航空动力学报,2021,36(5): 1060-1071. WANG Jingyuan,SHAN Peng,ZHOU Yicheng. Unsteady flow simulation of contra-rotating propfans using immersed body-fitted grids boundary method[J]. Journal of Aerospace Power,2021,36(5): 1060-1071. (in Chinese

    WANG Jingyuan, SHAN Peng, ZHOU Yicheng. Unsteady flow simulation of contra-rotating propfans using immersed body-fitted grids boundary method[J]. Journal of Aerospace Power, 2021, 36(5): 1060-1071. (in Chinese)
    [24] 金海波,陈宣亮,覃湘桂. 基于Mohring声类比的开式转子发动机噪声分析[J]. 航空动力学报,2018,33(4): 785-791. JIN Haibo,CHEN Xuanliang,QIN Xianggui. Open-rotor engine noise analysis based on Mohring acoustic analogy[J]. Journal of Aerospace Power,2018,33(4): 785-791. (in Chinese

    JIN Haibo, CHEN Xuanliang, QIN Xianggui. Open-rotor engine noise analysis based on Mohring acoustic analogy[J]. Journal of Aerospace Power, 2018, 33(4): 785-791. (in Chinese)
    [25] 中国空气动力研究与发展中心. 对转螺旋桨气动力和气动噪声试验圆满完成[EB/OL]. (2021-10-14)[2022-6-4]. www. cardc. cn/News-Read. Asp?Channelld=2&Classld=5&ld=323. China Aerodynamics Research and Development Center. The aerodynamic and areoacoustic test of counter-rotating propeller was completed[EB/OL]. (2021-10-14)[2022-6-4]. www. cardc. cn/News-Read. Asp?Channelld=2&Classld=5&ld=323.

    China Aerodynamics Research and Development Center. The aerodynamic and areoacoustic test of counter-rotating propeller was completed[EB/OL]. (2021-10-14)[2022-6-4]. www. cardc. cn/News-Read. Asp?Channelld=2&Classld=5&ld=323.
    [26] 崔盼望,仝帆,冯和英,等. 后排转子直径对对转螺旋桨气动和声学特性的影响[J]. 航空动力学报,2022,37(8): 1749-1760. CUI Panwang,TONG Fan,FENG Heying,et al. Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter-rotating proeller[J]. Journal of Aerospace Power,2022,37(8): 1749-1760. (in Chinese

    CUI Panwang, TONG Fan, FENG Heying, et al. Influence of rear rotor diameter on aerodynamic and acoustic characteristics of counter-rotating proeller[J]. Journal of Aerospace Power, 2022, 37(8): 1749-1760. (in Chinese)
    [27] WEI Chunhua,JIAO Lingrui,TONG Fan,et al. Pressure field measurements on large-scale propeller blades using pressure-sensitive paint[J]. Acta Mechanica Sinica,2022,38(2): 121366. doi: 10.1007/s10409-021-09048-1
    [28] HE L,CHEN T,WELLS R G,et al. Analysis of rotor-rotor and stator-stator interferences in multi-stage turbomachines[R]. Amsterdam,Netherlands: ASME Turbo Expo: Power for Land,Sea,& Air,2002.
    [29] 赵军,刘宝杰. 基于非线性谐波法的跨声速压气机确定应力建模[J]. 航空动力学报,2015,30(10): 2440-2449. ZHAO Jun,LIU Baojie. Deterministic stress modelling in transonic compressor based on nonlinear harmonic method[J]. Journal of Aerospace Power,2015,30(10): 2440-2449. (in Chinese

    ZHAO Jun, LIU Baojie. Deterministic stress modelling in transonic compressor based on nonlinear harmonic method[J]. Journal of Aerospace Power, 2015, 30(10): 2440-2449. (in Chinese)
    [30] FARASSAT F. Derivation of formulations 1 and 1A of Farassat[R]. NASA/TM-2007-214853 2007.
    [31] FARASSAT F,DUNN M,TINETTI A,et al. Open rotor noise prediction methods at NASA langley: a technology review[R]. AIAA2009-3133,2009.
    [32] DI FRANCESCANTONIO P. A new boundary integral formulation for the prediction of sound radiation[J]. Journal of Sound and Vibration,1997,202(4): 491-509. doi: 10.1006/jsvi.1996.0843
  • 加载中
图(31) / 表(3)
计量
  • 文章访问数:  6
  • HTML浏览量:  8
  • PDF量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-16
  • 网络出版日期:  2024-04-26

目录

    /

    返回文章
    返回