留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用气旋耦合喷嘴的凹腔驻涡加力燃烧室点火性能研究

翟云超 钟世林 康玉东 李洋 王金涛

翟云超, 钟世林, 康玉东, 等. 采用气旋耦合喷嘴的凹腔驻涡加力燃烧室点火性能研究[J]. 航空动力学报, 2024, 39(12):20220808 doi: 10.13224/j.cnki.jasp.20220808
引用本文: 翟云超, 钟世林, 康玉东, 等. 采用气旋耦合喷嘴的凹腔驻涡加力燃烧室点火性能研究[J]. 航空动力学报, 2024, 39(12):20220808 doi: 10.13224/j.cnki.jasp.20220808
ZHAI Yunchao, ZHONG Shilin, KANG Yudong, et al. Study on ignition performance of a cavity trapped vortex combustor of the afterburner with an air-blast-swirl atomizer[J]. Journal of Aerospace Power, 2024, 39(12):20220808 doi: 10.13224/j.cnki.jasp.20220808
Citation: ZHAI Yunchao, ZHONG Shilin, KANG Yudong, et al. Study on ignition performance of a cavity trapped vortex combustor of the afterburner with an air-blast-swirl atomizer[J]. Journal of Aerospace Power, 2024, 39(12):20220808 doi: 10.13224/j.cnki.jasp.20220808

采用气旋耦合喷嘴的凹腔驻涡加力燃烧室点火性能研究

doi: 10.13224/j.cnki.jasp.20220808
详细信息
    作者简介:

    翟云超(1991-),男,工程师,硕士,主要从事燃烧室研究

    通讯作者:

    钟世林(1975-),男,研究员,博士生,主要从事燃烧室研究。E-mail:zhongslcgte@sohu.com

  • 中图分类号: V231.2

Study on ignition performance of a cavity trapped vortex combustor of the afterburner with an air-blast-swirl atomizer

  • 摘要:

    为了研究凹腔驻涡加力燃烧室的贫油点火特性,设计了一种出口为扁平状喇叭口的气旋耦合喷嘴,通过试验研究和数值仿真分析,获得了气旋耦合喷嘴的油雾锥角等特性和凹腔贫油点火特性。结果表明:气旋耦合喷嘴展向油雾锥角受气压和油压的影响较大,而径向油雾锥角基本不受影响、保持稳定。在内涵进气马赫数为0.53的条件下,凹腔在油气比0.00179下贫油点火成功;当外内涵压比为0.93时,凹腔内因不能形成理想涡系,不利于凹腔点火,其贫油点火油气比为0.00376;当外内涵压比不变时,增大进气压力,有利于凹腔贫油点火;电嘴插入深度对凹腔的点火性能影响较大,其插入深度需与气旋耦合喷嘴的径向油雾锥角匹配;凹腔前壁壁温数据可以作为凹腔点火是否成功的判据。

     

  • 图 1  凹腔驻涡加力燃烧室

    Figure 1.  Cavity trapped vortex combustor of the afterburner

    图 2  理想驻涡形态

    Figure 2.  Ideal stationary vortex form

    图 3  电嘴插入深度示意图

    Figure 3.  Schematic diagram of igniter insertion depth

    图 4  凹腔方案

    Figure 4.  Cavity scheme

    图 5  气旋耦合喷嘴

    Figure 5.  Air-blast-swirl atomizer

    图 6  试验系统示意图

    Figure 6.  Schematic diagram of test system

    图 7  油雾锥角试验

    Figure 7.  Spray cone angle test

    图 8  凹腔壁温测点

    Figure 8.  Measuring point of cavity wall temperature

    图 9  网格无关性验证

    Figure 9.  Grid independence verfication

    图 10  展向油雾锥角

    Figure 10.  Spanwise spray cone angle

    图 11  径向油雾锥角

    Figure 11.  Radial spray cone angle

    图 12  速度场

    Figure 12.  Velocity field

    图 13  燃油质量分数场

    Figure 13.  Fuel mass fraction field

    图 14  凹腔贫油点火特性

    Figure 14.  Cavity lean ignition characteristics

    图 15  电嘴插入深度的影响

    Figure 15.  Influence of the insertion depth of the igniter

    图 16  凹腔截面燃油质量分数场

    Figure 16.  Fuel mass fraction field diagram in cavity section

    图 17  外内涵压比的影响

    Figure 17.  Influence of the inlet pressure ratio of out and inner bypass

    图 18  外内涵压比对流场的影响

    Figure 18.  Influence of the inlet pressure ratio of out and inner bypass on flow field

    图 19  凹腔的典型流场图

    Figure 19.  Typical flow field diagram in cavity

    图 20  进气压力的影响

    Figure 20.  Influence of inlet pressure

    图 21  Case4的流场图

    Figure 21.  Flow field diagram of case4

    图 22  凹腔壁温曲线图

    Figure 22.  Cavity wall temperature curve

    表  1  油雾锥角试验工况

    Table  1.   Condition of spray cone angle test

    工况∆pfuel/MPa∆pair/kPa
    GK115
    GK2115
    GK3130
    GK425
    GK5215
    GK6230
    下载: 导出CSV

    表  2  贫油点火试验工况

    Table  2.   Condition of lean ignition test

    方案d/mmT6/Kp6/kPaMa6T16/Kpy
    case1712001350.535000.97
    case2712001350.486000.97
    case3712001350.486000.93
    case4712002200.486000.97
    case5212001350.486000.97
    下载: 导出CSV
  • [1] BURRUS D L,JOHNSON A W,ROQUEMORE W M,et al. Performance assessment of a prototype trapped vortex combustor concept for gas turbine application: ASME Paper 2001-GT-0087[R]. New York: ASME,2001.
    [2] MEYER T,BROWN M,FONOV S,et al. Optical diagnostics and numerical characterization of a trapped-vortex combustor: AIAA 2002-3863[R]. Reston,Virigina: AIAA,2002.
    [3] HENDRICKS R C,SHOUSE D T,ROQUEMORE W M,et al. Experimental and computational study of trapped vortex combustor sector rig with high-speed diffuser flow[J]. International Journal of Rotating Machinery,2001,7(6): 375-385. doi: 10.1155/S1023621X0100032X
    [4] HENDRICKS R C,SHOUSE D T,ROQUEMORE W M,et al. Experimental and computational study of trapped vortex combustor sector rig with tri-pass diffuser: NASA/TM-2004-212507[R]. Washington: NASA,2004.
    [5] 何小民,王家骅. 驻涡火焰稳定器冷态流场特性的初步研究[J]. 航空动力学报,2002,17(5): 567-571. HE Xiaomin,WANG Jiahua. An investigation on the fluid characteristics of trapped-vortex combustor[J]. Journal of Aerospace Power,2002,17(5): 567-571. (in Chinese doi: 10.3969/j.issn.1000-8055.2002.05.012

    HE Xiaomin, WANG Jiahua. An investigation on the fluid characteristics of trapped-vortex combustor[J]. Journal of Aerospace Power, 2002, 17(5): 567-571. (in Chinese) doi: 10.3969/j.issn.1000-8055.2002.05.012
    [6] 何小民,许金生,苏俊卿. 驻涡区进口结构参数影响TVC燃烧性能的试验[J]. 航空动力学报,2007,22(11): 1798-1802. HE Xiaomin,XU Jinsheng,SU Junqing. Effect of air and fuel injection patterns in pilot zone on trapped-vortex combustor performance[J]. Journal of Aerospace Power,2007,22(11): 1798-1802. (in Chinese doi: 10.3969/j.issn.1000-8055.2007.11.003

    HE Xiaomin, XU Jinsheng, SU Junqing. Effect of air and fuel injection patterns in pilot zone on trapped-vortex combustor performance[J]. Journal of Aerospace Power, 2007, 22(11): 1798-1802. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.11.003
    [7] 何小民,姚锋. 流动和油气参数对驻涡燃烧室燃烧性能的影响[J]. 航空动力学报,2006,21(5): 810-813. HE Xiaomin,YAO Feng. Effect of flow parameters and equivalence ratio on the trapped vortex combustor performance[J]. Journal of Aerospace Power,2006,21(5): 810-813. (in Chinese doi: 10.3969/j.issn.1000-8055.2006.05.005

    HE Xiaomin, YAO Feng. Effect of flow parameters and equivalence ratio on the trapped vortex combustor performance[J]. Journal of Aerospace Power, 2006, 21(5): 810-813. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.05.005
    [8] 何小民,许金生,苏俊卿. 驻涡燃烧室燃烧性能试验[J]. 航空动力学报,2009,24(2): 318-323. HE Xiaomin,XU Jinsheng,SU Junqing. Experimental research of the performance of the trapped-vortex combustor[J]. Journal of Aerospace Power,2009,24(2): 318-323. (in Chinese

    HE Xiaomin, XU Jinsheng, SU Junqing. Experimental research of the performance of the trapped-vortex combustor[J]. Journal of Aerospace Power, 2009, 24(2): 318-323. (in Chinese)
    [9] DAVOUDZADEH F,BUEHRLE R,LIU N S,et al. Numerical Simulation of the RTA Combustion Rig: NASA/TM-2005-213899[R]. Washington: NASA,2005.
    [10] LEE J,WINSLOW R,BUEHRLE R. J. The GE-NASA RTA hyperburner design and development: NASA/TM-2005-213803[R]. Washington: NASA,2005.
    [11] WOLTMANN I E,ARCHER S S,BACHMAN F G,et al. Augmentor with trapped vortex cavity pilot. US 8011188 B2[P].2011-09-06.
    [12] 秦伟林,何小民,金义,等. 凹腔驻涡与支板稳焰组合加力燃烧室模型冷态流场试验[J]. 航空动力学报,2012,27(6): 1347-1354. QIN Weilin,HE Xiaomin,JIN Yi,et al. Experimental investigation on cold flow characteristics of afterburner with cavity/strut hybrid flameholders[J]. Journal of Aerospace Power,2012,27(6): 1347-1354. (in Chinese

    QIN Weilin, HE Xiaomin, JIN Yi, et al. Experimental investigation on cold flow characteristics of afterburner with cavity/strut hybrid flameholders[J]. Journal of Aerospace Power, 2012, 27(6): 1347-1354. (in Chinese)
    [13] 翟云超,钟世林,康玉东,等. 径向稳定器冷却方式对壁温和流场影响的数值模拟[J]. 燃气涡轮试验与研究,2018,31(6): 14-17. ZHAI Yunchao,ZHONG Shilin,KANG Yudong,et al. Impact analysis of cooling method of radial flameholder on wall temperature and flow field by numerical simulation[J]. Gas Turbine Experiment and Research,2018,31(6): 14-17. (in Chinese doi: 10.3969/j.issn.1672-2620.2018.06.003

    ZHAI Yunchao, ZHONG Shilin, KANG Yudong, et al. Impact analysis of cooling method of radial flameholder on wall temperature and flow field by numerical simulation[J]. Gas Turbine Experiment and Research, 2018, 31(6): 14-17. (in Chinese) doi: 10.3969/j.issn.1672-2620.2018.06.003
    [14] 谭云川,钟华贵,孙瑞礼,等. 驻涡加力燃烧室贫油熄火性能的影响[J]. 航空动力学报,2021,36(9): 1932-1941. TAN Yunchuan,ZHONG Huagui,SUN Ruili,et al. Effect of lean blowout performance of trapped vortex combustor of the afterburner[J]. Journal of Aerospace Power,2021,36(9): 1932-1941. (in Chinese

    TAN Yunchuan, ZHONG Huagui, SUN Ruili, et al. Effect of lean blowout performance of trapped vortex combustor of the afterburner[J]. Journal of Aerospace Power, 2021, 36(9): 1932-1941. (in Chinese)
    [15] 吴泽俊,何小民,洪亮,等. 采用离心喷嘴的单凹腔驻涡燃烧室点火与贫熄特性[J]. 推进技术,2015,36(4): 601-607. WU Zejun,HE Xiaomin,HONG Liang,et al. Ignition and lean blowout characteristics of a single-cavity trapped vortex combustor utilizing pressure swirl atomizer[J]. Journal of Propulsion Technology,2015,36(4): 601-607. (in Chinese

    WU Zejun, HE Xiaomin, HONG Liang, et al. Ignition and lean blowout characteristics of a single-cavity trapped vortex combustor utilizing pressure swirl atomizer[J]. Journal of Propulsion Technology, 2015, 36(4): 601-607. (in Chinese)
    [16] 邢菲,樊未军,张荣春,等. 蒸发管供油的单驻涡燃烧室贫油点火试验[J]. 推进技术,2009,30(5): 523-527. XING Fei,FAN Weijun,ZHANG Rongchun,et al. Ignition performance of a single trapped vortex combustor with evaporation tube as fuel supply[J]. Journal of Propulsion Technology,2009,30(5): 523-527. (in Chinese doi: 10.3321/j.issn:1001-4055.2009.05.003

    XING Fei, FAN Weijun, ZHANG Rongchun, et al. Ignition performance of a single trapped vortex combustor with evaporation tube as fuel supply[J]. Journal of Propulsion Technology, 2009, 30(5): 523-527. (in Chinese) doi: 10.3321/j.issn:1001-4055.2009.05.003
    [17] 张荣春,樊未军,宋双文. 驻涡燃烧室蒸发管供油装置的雾化蒸发性能试验[J]. 航空动力学报,2011,26(11): 2495-2502. ZHANG Rongchun,FAN Weijun,SONG Shuangwen. Atomization and evaporation performance experiment of evaporating tube for trapped vortex combustor[J]. Journal of Aerospace Power,2011,26(11): 2495-2502. (in Chinese

    ZHANG Rongchun, FAN Weijun, SONG Shuangwen. Atomization and evaporation performance experiment of evaporating tube for trapped vortex combustor[J]. Journal of Aerospace Power, 2011, 26(11): 2495-2502. (in Chinese)
    [18] LI Mingyu,HE Xiaomin,ZHAO Yuling,et al. Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer[J]. Applied Energy,2018,216: 286-295. doi: 10.1016/j.apenergy.2018.02.111
    [19] 曹敏,何小民. 气旋耦合喷嘴喷雾特性研究[J]. 机械与电子,2020,38(2): 34-40. CAO Min,He Xiaomin. Study on spray characteristics of a novel hybrid Atomizer[J]. Machinery & Electronics,2020,38(2): 34-40. (in Chinese

    CAO Min, He Xiaomin. Study on spray characteristics of a novel hybrid Atomizer[J]. Machinery & Electronics, 2020, 38(2): 34-40. (in Chinese)
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  98
  • HTML浏览量:  101
  • PDF量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-22
  • 网络出版日期:  2024-08-14

目录

    /

    返回文章
    返回