Study on ignition performance of a cavity trapped vortex combustor of the afterburner with an air-blast-swirl atomizer
-
摘要:
为了研究凹腔驻涡加力燃烧室的贫油点火特性,设计了一种出口为扁平状喇叭口的气旋耦合喷嘴,通过试验研究和数值仿真分析,获得了气旋耦合喷嘴的油雾锥角等特性和凹腔贫油点火特性。结果表明:气旋耦合喷嘴展向油雾锥角受气压和油压的影响较大,而径向油雾锥角基本不受影响、保持稳定。在内涵进气马赫数为0.53的条件下,凹腔在油气比
0.00179 下贫油点火成功;当外内涵压比为0.93时,凹腔内因不能形成理想涡系,不利于凹腔点火,其贫油点火油气比为0.00376 ;当外内涵压比不变时,增大进气压力,有利于凹腔贫油点火;电嘴插入深度对凹腔的点火性能影响较大,其插入深度需与气旋耦合喷嘴的径向油雾锥角匹配;凹腔前壁壁温数据可以作为凹腔点火是否成功的判据。Abstract:In order to study the lean ignition characteristics of an air-blast-swirl atomizer in a cavity trapped vortex combustor of the afterburner, an air-blast-swirl atomizer with a flat bell mouth was designed. Through test research and numerical simulation analysis, the characteristics of spray cone angle and lean ignition of the air-blast-swirl atomizer were obtained. The results showed that the spanwise spray cone angle of the air-blast-swirl atomizer was greatly affected by air pressure and oil pressure, while the radial spray cone angle was basically unaffected and kept stable; under the condition of Mach number 0.53, the cavity trapped vortex combustor of the afterburner can successfully ignite with lean ignition at the fuel air ratio of
0.00179 ; when the inlet pressure ratio of out and inner bypass was 0.93, the ideal vortex system cannot be formed in the cavity, making it inconducive to the afterburner ignition; and the lean ignition fuel air ratio was0.00376 ; if the inlet pressure ratio of out and inner bypass was constant, increasing the inlet pressure could be beneficial to lean ignition of the afterburner; the insertion depth of the igniter had a great influence on the ignition performance of the cavity, and its insertion depth was required to match the radial spray cone angle of the air-blast-swirl atomizer; the wall temperature data of the front wall of the cavity can be used as a criterion for the success of the cavity ignition. -
表 1 油雾锥角试验工况
Table 1. Condition of spray cone angle test
工况 ∆pfuel/MPa ∆pair/kPa GK1 1 5 GK2 1 15 GK3 1 30 GK4 2 5 GK5 2 15 GK6 2 30 表 2 贫油点火试验工况
Table 2. Condition of lean ignition test
方案 d/mm T6/K p6/kPa Ma6 T16/K py case1 7 1200 135 0.53 500 0.97 case2 7 1200 135 0.48 600 0.97 case3 7 1200 135 0.48 600 0.93 case4 7 1200 220 0.48 600 0.97 case5 2 1200 135 0.48 600 0.97 -
[1] BURRUS D L,JOHNSON A W,ROQUEMORE W M,et al. Performance assessment of a prototype trapped vortex combustor concept for gas turbine application: ASME Paper 2001-GT-0087[R]. New York: ASME,2001. [2] MEYER T,BROWN M,FONOV S,et al. Optical diagnostics and numerical characterization of a trapped-vortex combustor: AIAA 2002-3863[R]. Reston,Virigina: AIAA,2002. [3] HENDRICKS R C,SHOUSE D T,ROQUEMORE W M,et al. Experimental and computational study of trapped vortex combustor sector rig with high-speed diffuser flow[J]. International Journal of Rotating Machinery,2001,7(6): 375-385. doi: 10.1155/S1023621X0100032X [4] HENDRICKS R C,SHOUSE D T,ROQUEMORE W M,et al. Experimental and computational study of trapped vortex combustor sector rig with tri-pass diffuser: NASA/TM-2004-212507[R]. Washington: NASA,2004. [5] 何小民,王家骅. 驻涡火焰稳定器冷态流场特性的初步研究[J]. 航空动力学报,2002,17(5): 567-571. HE Xiaomin,WANG Jiahua. An investigation on the fluid characteristics of trapped-vortex combustor[J]. Journal of Aerospace Power,2002,17(5): 567-571. (in Chinese doi: 10.3969/j.issn.1000-8055.2002.05.012HE Xiaomin, WANG Jiahua. An investigation on the fluid characteristics of trapped-vortex combustor[J]. Journal of Aerospace Power, 2002, 17(5): 567-571. (in Chinese) doi: 10.3969/j.issn.1000-8055.2002.05.012 [6] 何小民,许金生,苏俊卿. 驻涡区进口结构参数影响TVC燃烧性能的试验[J]. 航空动力学报,2007,22(11): 1798-1802. HE Xiaomin,XU Jinsheng,SU Junqing. Effect of air and fuel injection patterns in pilot zone on trapped-vortex combustor performance[J]. Journal of Aerospace Power,2007,22(11): 1798-1802. (in Chinese doi: 10.3969/j.issn.1000-8055.2007.11.003HE Xiaomin, XU Jinsheng, SU Junqing. Effect of air and fuel injection patterns in pilot zone on trapped-vortex combustor performance[J]. Journal of Aerospace Power, 2007, 22(11): 1798-1802. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.11.003 [7] 何小民,姚锋. 流动和油气参数对驻涡燃烧室燃烧性能的影响[J]. 航空动力学报,2006,21(5): 810-813. HE Xiaomin,YAO Feng. Effect of flow parameters and equivalence ratio on the trapped vortex combustor performance[J]. Journal of Aerospace Power,2006,21(5): 810-813. (in Chinese doi: 10.3969/j.issn.1000-8055.2006.05.005HE Xiaomin, YAO Feng. Effect of flow parameters and equivalence ratio on the trapped vortex combustor performance[J]. Journal of Aerospace Power, 2006, 21(5): 810-813. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.05.005 [8] 何小民,许金生,苏俊卿. 驻涡燃烧室燃烧性能试验[J]. 航空动力学报,2009,24(2): 318-323. HE Xiaomin,XU Jinsheng,SU Junqing. Experimental research of the performance of the trapped-vortex combustor[J]. Journal of Aerospace Power,2009,24(2): 318-323. (in ChineseHE Xiaomin, XU Jinsheng, SU Junqing. Experimental research of the performance of the trapped-vortex combustor[J]. Journal of Aerospace Power, 2009, 24(2): 318-323. (in Chinese) [9] DAVOUDZADEH F,BUEHRLE R,LIU N S,et al. Numerical Simulation of the RTA Combustion Rig: NASA/TM-2005-213899[R]. Washington: NASA,2005. [10] LEE J,WINSLOW R,BUEHRLE R. J. The GE-NASA RTA hyperburner design and development: NASA/TM-2005-213803[R]. Washington: NASA,2005. [11] WOLTMANN I E,ARCHER S S,BACHMAN F G,et al. Augmentor with trapped vortex cavity pilot. US 8011188 B2[P].2011-09-06. [12] 秦伟林,何小民,金义,等. 凹腔驻涡与支板稳焰组合加力燃烧室模型冷态流场试验[J]. 航空动力学报,2012,27(6): 1347-1354. QIN Weilin,HE Xiaomin,JIN Yi,et al. Experimental investigation on cold flow characteristics of afterburner with cavity/strut hybrid flameholders[J]. Journal of Aerospace Power,2012,27(6): 1347-1354. (in ChineseQIN Weilin, HE Xiaomin, JIN Yi, et al. Experimental investigation on cold flow characteristics of afterburner with cavity/strut hybrid flameholders[J]. Journal of Aerospace Power, 2012, 27(6): 1347-1354. (in Chinese) [13] 翟云超,钟世林,康玉东,等. 径向稳定器冷却方式对壁温和流场影响的数值模拟[J]. 燃气涡轮试验与研究,2018,31(6): 14-17. ZHAI Yunchao,ZHONG Shilin,KANG Yudong,et al. Impact analysis of cooling method of radial flameholder on wall temperature and flow field by numerical simulation[J]. Gas Turbine Experiment and Research,2018,31(6): 14-17. (in Chinese doi: 10.3969/j.issn.1672-2620.2018.06.003ZHAI Yunchao, ZHONG Shilin, KANG Yudong, et al. Impact analysis of cooling method of radial flameholder on wall temperature and flow field by numerical simulation[J]. Gas Turbine Experiment and Research, 2018, 31(6): 14-17. (in Chinese) doi: 10.3969/j.issn.1672-2620.2018.06.003 [14] 谭云川,钟华贵,孙瑞礼,等. 驻涡加力燃烧室贫油熄火性能的影响[J]. 航空动力学报,2021,36(9): 1932-1941. TAN Yunchuan,ZHONG Huagui,SUN Ruili,et al. Effect of lean blowout performance of trapped vortex combustor of the afterburner[J]. Journal of Aerospace Power,2021,36(9): 1932-1941. (in ChineseTAN Yunchuan, ZHONG Huagui, SUN Ruili, et al. Effect of lean blowout performance of trapped vortex combustor of the afterburner[J]. Journal of Aerospace Power, 2021, 36(9): 1932-1941. (in Chinese) [15] 吴泽俊,何小民,洪亮,等. 采用离心喷嘴的单凹腔驻涡燃烧室点火与贫熄特性[J]. 推进技术,2015,36(4): 601-607. WU Zejun,HE Xiaomin,HONG Liang,et al. Ignition and lean blowout characteristics of a single-cavity trapped vortex combustor utilizing pressure swirl atomizer[J]. Journal of Propulsion Technology,2015,36(4): 601-607. (in ChineseWU Zejun, HE Xiaomin, HONG Liang, et al. Ignition and lean blowout characteristics of a single-cavity trapped vortex combustor utilizing pressure swirl atomizer[J]. Journal of Propulsion Technology, 2015, 36(4): 601-607. (in Chinese) [16] 邢菲,樊未军,张荣春,等. 蒸发管供油的单驻涡燃烧室贫油点火试验[J]. 推进技术,2009,30(5): 523-527. XING Fei,FAN Weijun,ZHANG Rongchun,et al. Ignition performance of a single trapped vortex combustor with evaporation tube as fuel supply[J]. Journal of Propulsion Technology,2009,30(5): 523-527. (in Chinese doi: 10.3321/j.issn:1001-4055.2009.05.003XING Fei, FAN Weijun, ZHANG Rongchun, et al. Ignition performance of a single trapped vortex combustor with evaporation tube as fuel supply[J]. Journal of Propulsion Technology, 2009, 30(5): 523-527. (in Chinese) doi: 10.3321/j.issn:1001-4055.2009.05.003 [17] 张荣春,樊未军,宋双文. 驻涡燃烧室蒸发管供油装置的雾化蒸发性能试验[J]. 航空动力学报,2011,26(11): 2495-2502. ZHANG Rongchun,FAN Weijun,SONG Shuangwen. Atomization and evaporation performance experiment of evaporating tube for trapped vortex combustor[J]. Journal of Aerospace Power,2011,26(11): 2495-2502. (in ChineseZHANG Rongchun, FAN Weijun, SONG Shuangwen. Atomization and evaporation performance experiment of evaporating tube for trapped vortex combustor[J]. Journal of Aerospace Power, 2011, 26(11): 2495-2502. (in Chinese) [18] LI Mingyu,HE Xiaomin,ZHAO Yuling,et al. Performance enhancement of a trapped-vortex combustor for gas turbine engines using a novel hybrid-atomizer[J]. Applied Energy,2018,216: 286-295. doi: 10.1016/j.apenergy.2018.02.111 [19] 曹敏,何小民. 气旋耦合喷嘴喷雾特性研究[J]. 机械与电子,2020,38(2): 34-40. CAO Min,He Xiaomin. Study on spray characteristics of a novel hybrid Atomizer[J]. Machinery & Electronics,2020,38(2): 34-40. (in ChineseCAO Min, He Xiaomin. Study on spray characteristics of a novel hybrid Atomizer[J]. Machinery & Electronics, 2020, 38(2): 34-40. (in Chinese) -